Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques

[1]  T. Tomonaga,et al.  12-Hydroxyeicosapentaenoic acid inhibits foam cell formation and ameliorates high-fat diet-induced pathology of atherosclerosis in mice , 2021, Scientific Reports.

[2]  Ning Wang,et al.  The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases , 2020, Frontiers in Microbiology.

[3]  H. Kiyono,et al.  Maternal ω3 docosapentaenoic acid inhibits infant allergic dermatitis through TRAIL‐expressing plasmacytoid dendritic cells in mice , 2020, Allergy.

[4]  R. Frozza,et al.  The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication , 2020, Frontiers in Endocrinology.

[5]  A. Ichimura,et al.  Free Fatty Acid Receptors in Health and Disease. , 2020, Physiological reviews.

[6]  T. Nagatake,et al.  17(S),18(R)‐epoxyeicosatetraenoic acid generated by cytochrome P450 BM‐3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G‐protein‐coupled receptor 40‐mediated neutrophil suppression , 2019, FASEB bioAdvances.

[7]  S. Lorkowski,et al.  The Peroxisome Proliferator–Activated Receptor (PPAR)-γ Antagonist 2-Chloro-5-Nitro-N-Phenylbenzamide (GW9662) Triggers Perilipin 2 Expression via PPARδ and Induces Lipogenesis and Triglyceride Accumulation in Human THP-1 Macrophages , 2019, Molecular Pharmacology.

[8]  F. Nan,et al.  Sarcodia suieae acetyl-xylogalactan regulate RAW 264.7 macrophage NF-kappa B activation and IL-1 beta cytokine production in macrophage polarization , 2019, Scientific Reports.

[9]  T. Tomonaga,et al.  Dietary Omega-3 Fatty Acid Dampens Allergic Rhinitis via Eosinophilic Production of the Anti-Allergic Lipid Mediator 15-Hydroxyeicosapentaenoic Acid in Mice , 2019, Nutrients.

[10]  MarwanFaleh. Almohammadi.,et al.  The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics , 2019, Journal of family medicine and primary care.

[11]  D. Drucker,et al.  Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids , 2019, Nature Communications.

[12]  M. Arita,et al.  Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. , 2019, International immunology.

[13]  E. Blaak,et al.  The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity , 2019, Nutrients.

[14]  T. Honda,et al.  Antigen presentation and adaptive immune responses in skin. , 2019, International immunology.

[15]  T. Nagatake,et al.  Host- and Microbe-Dependent Dietary Lipid Metabolism in the Control of Allergy, Inflammation, and Immunity , 2019, Front. Nutr..

[16]  Mieczysław Dutka,et al.  Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors , 2019, Inflammation Research.

[17]  T. Nagatake,et al.  Emerging roles of metabolites of ω3 and ω6 essential fatty acids in the control of intestinal inflammation , 2019, International immunology.

[18]  J. Manson,et al.  Marine n‐3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer , 2019, The New England journal of medicine.

[19]  Deepak L. Bhatt,et al.  Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia , 2019, The New England journal of medicine.

[20]  R. Collins,et al.  Effects of n‐3 Fatty Acid Supplements in Diabetes Mellitus , 2018, The New England journal of medicine.

[21]  Fan Li,et al.  Peroxisome proliferator–activated receptor γ (PPARγ) induces the gene expression of integrin αVβ5 to promote macrophage M2 polarization , 2018, The Journal of Biological Chemistry.

[22]  Charles N Serhan,et al.  Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. , 2018, Journal of Clinical Investigation.

[23]  T. Ushiki,et al.  A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling , 2018, Scientific Reports.

[24]  Ichigaku Takigawa,et al.  Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues , 2018, Cell reports.

[25]  M. Karin,et al.  NF-κB, inflammation, immunity and cancer: coming of age , 2018, Nature Reviews Immunology.

[26]  T. Kusakabe,et al.  α‐Linolenic acid‐derived metabolites from gut lactic acid bacteria induce differentiation of anti‐inflammatory M2 macrophages through G protein‐coupled receptor 40 , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[27]  M. Ishii,et al.  The 17,18‐epoxyeicosatetraenoic acid–G protein–coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques , 2017, The Journal of allergy and clinical immunology.

[28]  T. Suganami,et al.  Molecular mechanism of obesity‐induced ‘metabolic’ tissue remodeling , 2017, Journal of diabetes investigation.

[29]  F. Ginhoux,et al.  High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing γδ T cells , 2017, Scientific Reports.

[30]  C. Lebrilla,et al.  Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion , 2017, Science.

[31]  M. Tominaga,et al.  10‐oxo‐12(Z)‐octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1 , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[32]  Takuya Suzuki,et al.  Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice , 2017, International journal of food sciences and nutrition.

[33]  G. Savoye,et al.  Fatty acids, eicosanoids and PPAR gamma. , 2016, European journal of pharmacology.

[34]  Robert A. Harris,et al.  Nitric Oxide Produced by Macrophages Inhibits Adipocyte Differentiation and Promotes Profibrogenic Responses in Preadipocytes to Induce Adipose Tissue Fibrosis , 2016, Diabetes.

[35]  S. Kishino,et al.  Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a , 2016, Journal of applied microbiology.

[36]  Qiyang Shou,et al.  Metformin improves hepatic IRS2/PI3K/Akt signaling in insulin-resistant rats of NASH and cirrhosis. , 2016, The Journal of endocrinology.

[37]  Joan W. Miller,et al.  AMPK-Activated Protein Kinase Suppresses Ccr2 Expression by Inhibiting the NF-κB Pathway in RAW264.7 Macrophages , 2016, PloS one.

[38]  P. Sime,et al.  PPARγ and the Innate Immune System Mediate the Resolution of Inflammation , 2015, PPAR research.

[39]  R. Bataller,et al.  Fat-Specific Protein 27/CIDEC Promotes Development of Alcoholic Steatohepatitis in Mice and Humans. , 2015, Gastroenterology.

[40]  T. Kawada,et al.  Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes , 2015, Lipids.

[41]  S. Kishino,et al.  Characterization of hydroxy fatty acid dehydrogenase involved in polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a , 2015 .

[42]  S. Kishino,et al.  A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus , 2015, Journal of Lipid Research.

[43]  Makoto Arita,et al.  Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut , 2015, Scientific Reports.

[44]  S. Kishino,et al.  Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. , 2015, Journal of bioscience and bioengineering.

[45]  R. Yu,et al.  10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis. , 2015, Biochemical and biophysical research communications.

[46]  T. Funahashi,et al.  Visualized macrophage dynamics and significance of S100A8 in obese fat , 2015, Proceedings of the National Academy of Sciences.

[47]  Jeesun Lim,et al.  PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines , 2015, Mucosal Immunology.

[48]  Takuya Suzuki,et al.  A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway* , 2014, The Journal of Biological Chemistry.

[49]  L. Geiss,et al.  Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. , 2014, JAMA.

[50]  K. Ishii,et al.  Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin , 2014, Nature Immunology.

[51]  J. Collins,et al.  Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). , 2014, Bioorganic & medicinal chemistry letters.

[52]  H. Kiyono,et al.  Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition , 2013, Proceedings of the National Academy of Sciences.

[53]  Kevin D. G. Pfleger,et al.  Faculty Opinions recommendation of TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. , 2013 .

[54]  S. Higashiyama,et al.  TGFα shedding assay: an accurate and versatile method for detecting GPCR activation , 2012, Nature Methods.

[55]  P. Lie,et al.  The biology of interleukin-1: emerging concepts in the regulation of the actin cytoskeleton and cell junction dynamics , 2012, Cellular and Molecular Life Sciences.

[56]  Hiroki Nakanishi,et al.  Identification and Structure Determination of Novel Anti-inflammatory Mediator Resolvin E3, 17,18-Dihydroxyeicosapentaenoic Acid* , 2012, The Journal of Biological Chemistry.

[57]  A. M. Api,et al.  Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects , 2011, Cellular and Molecular Life Sciences.

[58]  J. Marshall Coming of age. , 2008, Surgical infections.

[59]  Hitoshi Shimano,et al.  Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance , 2007, Nature Medicine.

[60]  C. Glass,et al.  PPARs and molecular mechanisms of transrepression. , 2007, Biochimica et biophysica acta.

[61]  Frank Brombacher,et al.  Macrophage-specific PPARγ controls alternative activation and improves insulin resistance , 2007, Nature.

[62]  A. Saltiel,et al.  Obesity induces a phenotypic switch in adipose tissue macrophage polarization. , 2007, The Journal of clinical investigation.

[63]  J. Fornwald,et al.  Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules , 2006, British journal of pharmacology.

[64]  R. Kitazawa,et al.  MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. , 2006, The Journal of clinical investigation.

[65]  R. Leibel,et al.  CCR2 modulates inflammatory and metabolic effects of high-fat feeding. , 2006, The Journal of clinical investigation.

[66]  M. Linton,et al.  Conditional Knockout of Macrophage PPARγ Increases Atherosclerosis in C57BL/6 and Low-Density Lipoprotein Receptor–Deficient Mice , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[67]  K. Nakao,et al.  Therapeutic potential of thiazolidinediones in activation of peroxisome proliferator-activated receptor gamma for monocyte recruitment and endothelial regeneration. , 2005, European journal of pharmacology.

[68]  T. Willson,et al.  Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. , 2002, Biochemistry.

[69]  Robert N. Taylor,et al.  Nuclear Peroxisome Proliferator-Activated Receptors a and g Have Opposing Effects on Monocyte Chemotaxis in Endometriosis , 2000 .

[70]  C. Hou Production of 10-Ketostearic Acid from Oleic Acid by Flavobacterium sp. Strain DS5 (NRRL B-14859) , 1994, Applied and environmental microbiology.

[71]  J. Vane,et al.  EICOSAPENTAENOIC ACID AND PREVENTION OF THROMBOSIS AND ATHEROSCLEROSIS? , 1978, The Lancet.

[72]  M. Arita,et al.  Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. , 2015, Allergology international : official journal of the Japanese Society of Allergology.

[73]  I I Lelis,et al.  [Atopic dermatitis]. , 1980, Vestnik dermatologii i venerologii.