Nitrogen Control in Nanodiamond Produced by Detonation Shock-Wave-Assisted Synthesis

Development of efficient production methods of nanodiamond (ND) particles containing substitutional nitrogen and nitrogen-vacancy (NV) complexes remains an important goal in the nanodiamond community. ND synthesized from explosives is generally not among the preferred candidates for imaging applications owing to lack of optically active particles containing NV centers. In this paper, we have systematically studied representative classes of NDs produced by detonation shock wave conversion of different carbon precursor materials, namely, graphite and a graphite/hexogen mixture into ND, as well as ND produced from different combinations of explosives using different cooling methods (wet or dry cooling). We demonstrate that (i) the N content in nanodiamond particles can be controlled through a correct selection of the carbon precursor material (addition of graphite, explosives composition); (ii) particles larger than approximately 20 nm may contain in situ produced optically active NV centers, and (iii) in ND...

[1]  O. Shenderova,et al.  Identification of substitutional nitrogen and surface paramagnetic centers in nanodiamond of dynamic synthesis by electron paramagnetic resonance , 2011 .

[2]  A. Vul,et al.  Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds , 2010 .

[3]  Thomas Schenkel,et al.  Chip-scale nanofabrication of single spins and spin arrays in diamond. , 2010, Nano letters.

[4]  I. Buyanova,et al.  Paramagnetic centers in detonation nanodiamonds studied by CW and pulse EPR , 2010 .

[5]  O. Stéphan,et al.  High Nitrogen Doping of Detonation Nanodiamonds , 2010 .

[6]  J. Twamley,et al.  Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. , 2010, Nature nanotechnology.

[7]  Ilmo Sildos,et al.  Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. , 2010, Small.

[8]  C. Bostedt,et al.  Intrinsic photoluminescence of adamantane in the ultraviolet spectral region , 2009 .

[9]  Christian Eggeling,et al.  Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. , 2009, Nano letters.

[10]  D. Inglis,et al.  Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. , 2009, Small.

[11]  O. Shenderova,et al.  Determination of Size, Morphology, and Nitrogen Impurity Location in Treated Detonation Nanodiamond by Transmission Electron Microscopy , 2009 .

[12]  Kurt Aulenbacher,et al.  Fluorescence and spin properties of defects in single digit nanodiamonds. , 2009, ACS nano.

[13]  A. Vul,et al.  Electron spin resonance detection and identification of nitrogen centers in nanodiamonds , 2009 .

[14]  Pascal Aubert,et al.  High yield fabrication of fluorescent nanodiamonds , 2009, Nanotechnology.

[15]  Structure and properties of Dalan detonation diamonds , 2009 .

[16]  Yury Gogotsi,et al.  Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders , 2009 .

[17]  H-C Chang,et al.  Functionalized fluorescent nanodiamonds for biomedical applications. , 2009, Nanomedicine.

[18]  W. Lawrence,et al.  Effect of proton irradiation on photoluminescent properties of PDMS–nanodiamond composites , 2008, Nanotechnology.

[19]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[20]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[21]  A. A. Perov,et al.  The chemistry of the surface of modified detonation nanodiamonds of different types , 2008 .

[22]  Huan-Cheng Chang,et al.  Mass production and dynamic imaging of fluorescent nanodiamonds. , 2008, Nature nanotechnology.

[23]  A. A. Fokin,et al.  Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane. , 2008, Angewandte Chemie.

[24]  Serge Huant,et al.  Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy. , 2007, Optics letters.

[25]  K. Maslakov,et al.  State of C-atoms on the modified nanodiamond surface , 2007 .

[26]  Eiji Ōsawa,et al.  Recent progress and perspectives in single-digit nanodiamond , 2007 .

[27]  S. Prawer,et al.  Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. , 2007, Nano letters (Print).

[28]  D. Lamoen,et al.  Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles , 2007 .

[29]  Philippe Grangier,et al.  Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment , 2006, Science.

[30]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[31]  A. Barnard,et al.  Substitutional nitrogen in nanodiamond and bucky-diamond particles. , 2005, The journal of physical chemistry. B.

[32]  J. Meijer,et al.  Generation of single color centers by focused nitrogen implantation , 2005 .

[33]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[34]  D. Gruen,et al.  Bonding structure in nitrogen doped ultrananocrystalline diamond , 2003 .

[35]  Shenggao Liu,et al.  Isolation and Structure of Higher Diamondoids, Nanometer-Sized Diamond Molecules , 2002, Science.

[36]  James E. Butler,et al.  Single-Qubit Operations with the Nitrogen-Vacancy Center in Diamond , 2002 .

[37]  Thomas Frauenheim,et al.  Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries , 2001 .

[38]  Valerii Yu. Dolmatov,et al.  Detonation synthesis ultradispersed diamonds: properties and applications , 2001 .

[39]  A. Vul,et al.  Optical properties of nanodiamond layers , 2001 .

[40]  David N. Jamieson,et al.  The Raman spectrum of nanocrystalline diamond , 2000 .

[41]  Andre Stesmans,et al.  Structure and defects of detonation synthesis nanodiamond , 2000 .

[42]  Z. J. Yang,et al.  High nitrogen amounts incorporated diamond films deposited by the addition of nitrogen in a hot-filament CVD system , 1999 .

[43]  P. Buseck,et al.  Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds , 1996 .

[44]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[45]  Ager,et al.  Spatially resolved Raman studies of diamond films grown by chemical vapor deposition. , 1991, Physical review. B, Condensed matter.

[46]  E. Moroz,et al.  STUDY OF ULTRADISPERSED DIAMOND POWDERS OBTAINED USING EXPLOSION ENERGY , 1991 .

[47]  A. Kurdyumov,et al.  Real structure of dynamic synthesis diamonds , 1988 .

[48]  L. Trueb An Electron‐Microscope Study of Shock‐Synthesized Diamond , 1968 .

[49]  P. Decarli,et al.  Formation of Diamond by Explosive Shock , 1961, Science.