Kernel estimation for quantile sensitivities

Quantiles, also known as value-at-risk in financial applications, are important measures of random performance. Quantile sensitivities provide information on how changes in the input parameters affect the output quantiles. In this paper, we study the estimation of quantile sensitivities using simulation. We propose a new estimator by employing kernel method and show its consistency and asymptotic normality for i.i.d. data. Numerical results show that our estimator works well for the test problems.

[1]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[2]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[3]  L. Jeff Hong,et al.  Estimating Quantile Sensitivities , 2009, Oper. Res..

[4]  R. Durrett Probability: Theory and Examples , 1993 .

[5]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[6]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .

[7]  Pierre L'Ecuyer,et al.  An overview of derivative estimation , 1991, 1991 Winter Simulation Conference Proceedings..

[8]  J. Marsden,et al.  Elementary classical analysis , 1974 .

[9]  Michael C. Fu,et al.  Chapter 19 Gradient Estimation , 2006, Simulation.

[10]  G. Roussas Nonparametric regression estimation under mixing conditions , 1990 .

[11]  George G. Roussas,et al.  Asymptotic normality of the recursive kernel regression estimate under dependence conditions , 1992 .

[12]  P. Austin,et al.  Quantile regression: a statistical tool for out-of-hospital research. , 2003, Academic emergency medicine : official journal of the Society for Academic Emergency Medicine.

[13]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[14]  Dirk Tasche,et al.  Capital allocation for credit portfolios with kernel estimators , 2006, math/0612470.

[15]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[16]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[17]  Philip Heidelberger,et al.  Quantile Estimation in Dependent Sequences , 1984, Oper. Res..

[18]  Eugene F. Schuster,et al.  Joint Asymptotic Distribution of the Estimated Regression Function at a Finite Number of Distinct Points , 1972 .

[19]  Young K. Truong,et al.  Nonparametric curve estimation with time series errors , 1991 .

[20]  A. Ullah,et al.  Nonparametric Econometrics , 1999 .

[21]  Philippe Jorion Value at Risk , 2001 .

[22]  Olivier Scaillet,et al.  Sensitivity Analysis of Values at Risk , 2000 .

[23]  P. Sen On the Bahadur representation of sample quantiles for sequences of φ-mixing random variables , 1972 .

[24]  Donald L. Iglehart,et al.  Large-sample theory for standardized time series: an overview , 1985, WSC '85.

[25]  E. Lehmann Elements of large-sample theory , 1998 .

[26]  Yin Zhang,et al.  Optimizing cost and performance for multihoming , 2004, SIGCOMM 2004.

[27]  L. Jeff Hong,et al.  Simulating Sensitivities of Conditional Value at Risk , 2009, Manag. Sci..

[28]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[29]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[30]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[31]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .