Rational solutions to the KPI equation and multi rogue waves

Abstract We construct here rational solutions to the Kadomtsev–Petviashvili equation (KPI) as a quotient of two polynomials in x , y and t depending on several real parameters. This method provides an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2 N ( N + 1 ) in x , y and t depending on 2 N − 2 real parameters for each positive integer N . We give explicit expressions of the solutions in the simplest cases N = 1 and N = 2 and we study the patterns of their modulus in the ( x , y ) plane for different values of time t and parameters.

[1]  L. Stenflo,et al.  Rogue waves in the atmosphere , 2009, Journal of Plasma Physics.

[2]  Yuji Kodama,et al.  Young diagrams and N-soliton solutions of the KP equation , 2004, nlin/0406033.

[3]  Pierre Gaillard,et al.  Multi-parametric Deformations of Peregrine BreathersSolutions to the NLS Equation , 2015 .

[4]  Mark J. Ablowitz,et al.  On the evolution of packets of water waves , 1979, Journal of Fluid Mechanics.

[5]  Gino Biondini,et al.  On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy , 2003, nlin/0306003.

[6]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[7]  Y. Kivshar,et al.  Self-focusing of plane dark solitons in nonlinear defocusing media. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Gino Biondini,et al.  Line soliton interactions of the Kadomtsev-Petviashvili equation. , 2007, Physical review letters.

[9]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[10]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[11]  Pedro Daniel Prieto Martínez,et al.  Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems , 2011 .

[12]  Dmitry E. Pelinovsky,et al.  Rational solutions of the Kadomtsev–Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution , 1994 .

[13]  Javier Villarroel,et al.  Solutions to the Time Dependent Schrödinger and the Kadomtsev-Petviashvili Equations , 1997 .

[14]  Javier Villarroel,et al.  On the Discrete Spectrum of the Nonstationary Schrödinger Equation and Multipole Lumps of the Kadomtsev–Petviashvili I Equation , 1999 .

[15]  V. Matveev,et al.  Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters , 1979 .

[16]  Zhenya Yan Financial Rogue Waves , 2009, 0911.4259.

[17]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[18]  Y. Kodama,et al.  Submitted to: J. Phys. A: Math. Gen. , 2003 .

[19]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[20]  Igor Krichever,et al.  Rational solutions of the Kadomtsev — Petviashvili equation and integrable systems of N particles on a line , 1978 .