Dynamic parameter identification in industrial robots considering physical feasibility

The issue of identification of dynamic parameters in open-chain industrial manipulators is addressed with emphasis on the physical feasibility of the identified set of parameters. The dynamic model on which the identification procedure is based considers rigid-link robots including a complete actuator dynamics modeling and is obtained starting from the Gibbs–Appell equations. Friction at the joints is also considered. The dynamic equations of the model are written linearly with respect to the dynamic parameters to be identified. The matrix form linear system is solved through a quadratic optimization procedure with non-linear constraints in order to ensure the physical feasibility of the identified parameters. The procedure is tested using a PUMA 560 industrial robot. A comparison between control actions and torques obtained from the Inverse Dynamic Problem considering identified parameters is performed in order to establish the validity of the proposed procedure. The set of physically feasible dynamic parameters is used in an integration of the equations of motion of the robot and the results of the simulation are compared with the robot actual movement.

[1]  M. Gautier,et al.  Sequential identification of base parameters of robots , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[2]  Peter I. Corke,et al.  A search for consensus among model parameters reported for the PUMA 560 robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[3]  Jan Swevers,et al.  Generation of periodic trajectories for optimal robot excitation , 1994 .

[4]  Henrik Gordon Petersen,et al.  A new method for estimating parameters of a dynamic robot model , 2001, IEEE Trans. Robotics Autom..

[5]  Shir-Kuan Lin,et al.  An identification method for estimating the inertia parameters of a manipulator , 1992, J. Field Robotics.

[6]  M. Gautier Numerical calculation of the base inertial parameters of robots , 1991, J. Field Robotics.

[7]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[8]  Giuseppe Carlo Calafiore,et al.  Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation , 2001, J. Field Robotics.

[9]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[10]  Brian Armstrong,et al.  On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..

[11]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[12]  Maxime Gautier,et al.  New criteria of exciting trajectories for robot identification , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[13]  Koji Yoshida,et al.  Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters , 2000, Int. J. Robotics Res..

[14]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[15]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[16]  Vicente Mata,et al.  Serial-robot dynamics algorithms for moderately large numbers of joints , 2002 .

[17]  Pradeep K. Khosla Categorization of parameters in the dynamic robot model , 1989, IEEE Trans. Robotics Autom..

[18]  Vicente Mata,et al.  Solving the inverse dynamic control for low cost real-time industrial robot control applications , 2003, Robotica.

[19]  George A. Bekey,et al.  Identification of robot dynamics , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[20]  Jan Swevers,et al.  Maximum Likelihood Identification of a Dynamic Robot Model: Implementation Issues , 2002, Int. J. Robotics Res..