Inverted and forward preisach models for numerical analysis of electromagnetic field problems

This paper discusses the use of the inverted (B-based) Preisach model and its incorporation into the finite-element method (FEM). First, the B-based Preisach model is studied thoroughly along with the forward (H-based) Preisach model, highlighting the advantages and disadvantages of both models. The study confirms that, in addition to the main purpose of the B-based model—to compute the magnetic field H directly-the B-based model can overcome the congruency problem. Thus, the B-based model proves to be more accurate than the B-based model. Second, the paper suggests that incorporating the B-based Preisach model into FEM models results in relatively accurate, computationally efficient simulations. The method has been validated by simulating hysteresis torque in a high-speed induction motor, and a comparative investigation of the effectiveness, accuracy, and efficiency of the models has been conducted

[1]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[2]  P. J. Grundy,et al.  Preisach modelling of magnetisation changes in steel , 1995 .

[3]  I. Mayergoyz,et al.  Generalized Preisach model of hysteresis , 1988 .

[4]  J. Saitz,et al.  Computation of the core loss in an induction motor using the vector Preisach hysteresis model incorporated in finite element analysis , 2000 .

[5]  A. Ivanyi Neural Network Based Vector Hysteresis Model and the Nondestructive Testing Method , 2006 .

[6]  Vittorio Basso,et al.  Hysteresis models for the description of domain wall motion , 1996 .

[7]  Maurizio Repetto,et al.  A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis , 1995 .

[8]  Johan Gyselinck,et al.  Calculation of no load losses in an induction motor using an inverse vector Preisach model and an eddy current loss model , 2000 .

[9]  J. Saitz,et al.  Hysteresis modeling based on symmetric minor loops , 2005, IEEE Transactions on Magnetics.

[10]  Norio Takahashi,et al.  Problems in practical finite element analysis using Preisach hysteresis model , 1999 .

[11]  M. Rosu,et al.  Hysteresis model for finite-element analysis of permanent-magnet demagnetization in a large synchronous motor under a fault condition , 2005, IEEE Transactions on Magnetics.

[12]  Song-Yop Hahn,et al.  Implementation of hysteresis characteristics using the Preisach model with M-B variables , 1992 .

[13]  G. Bertotti Dynamic generalization of the scalar Preisach model of hysteresis , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[14]  François Henrotte,et al.  Modeling of ferromagnetic materials in 20 finite element problems using Preisach's model , 1992 .

[15]  Maurizio Repetto,et al.  Modeling of electromagnetic phenomena in soft magnetic materials under unidirectional time periodic flux excitations , 1999 .

[16]  Maurizio Repetto,et al.  A finite element solution for periodic eddy current problems in hysteretic media , 1996 .

[17]  Maurizio Repetto,et al.  A hysteretic periodic magnetic field solution using Preisach model and Fixed Point technique , 1995 .

[18]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[19]  Antero Arkkio,et al.  Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations , 1987 .

[20]  L. Vu-Quoc,et al.  Analysis of power magnetic components with nonlinear static hysteresis: finite-element formulation , 2005, IEEE Transactions on Magnetics.

[21]  E. Della Torre,et al.  Fast Preisach-based vector magnetization model , 2001 .

[22]  Nelson Sadowski,et al.  An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calculations , 2002 .

[23]  J. Saitz,et al.  Magnetic field analysis of induction motors combining Preisach hysteresis modeling and finite element techniques , 2001 .

[24]  Laurent Santandrea,et al.  Inverse Preisach model in finite elements modelling , 2000 .

[25]  M. Chiampi,et al.  Analysis of isotropic materials with vector hysteresis , 1998 .

[26]  P. Marketos,et al.  A viscous-type dynamic hysteresis model as a tool for loss separation in conducting ferromagnetic laminations , 2005, IEEE Transactions on Magnetics.

[27]  Ciro Visone,et al.  A new model of magnetic hysteresis, based on stop hysterons: an application to the magnetic field diffusion , 1996 .

[28]  P. Marketos,et al.  Congruency-based hysteresis models for transient simulation , 2004, IEEE Transactions on Magnetics.

[29]  Anthony John Moses,et al.  Dynamic hysteresis modelling , 2004 .

[30]  S. R. Naidu,et al.  Simulation of the hysteresis phenomenon using Preisach's theory , 1990 .

[31]  Július Saitz Magnetic field analysis of electric machines taking ferromagnetic hysteresis into account , 2001 .

[32]  Maurizio Repetto,et al.  Preisach Type Hysteresis Models in Magnetic Field Computation , 2000 .

[33]  Miklós Kuczmann,et al.  Hysteresis measurement in LabView , 2004 .

[34]  Tetsuji Matsuo,et al.  Application of stop and play models to the representation of magnetic characteristics of silicon steel sheet , 2003 .

[35]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[36]  M. Brokate,et al.  Some mathematical properties of the Preisach model for hysteresis , 1989 .

[37]  P. Dahl,et al.  Dynamic hysteresis modeling , 2000 .

[38]  Tetsuji Matsuo,et al.  Isotropic vector hysteresis represented by superposition of stop hysteron models , 2001 .

[39]  S. E. Zirka,et al.  Hysteresis modeling based on similarity , 1999 .

[40]  G. Kádár,et al.  On the Preisach function of ferromagnetic hysteresis , 1987 .

[41]  Song-Yop Hahn,et al.  Practical method to obtain the particle density distribution in scalar Preisach model , 1997 .

[42]  C. Visone,et al.  Models of magnetic hysteresis based on play and stop hysterons , 1997 .

[43]  M. Gyimesi,et al.  Implementation of the Preisach DOK magnetic hysteresis model in a commercial finite element package , 2001 .