Hyperbolic groups containing subgroups of type $\mathscr{F}_{3}$ not $\mathscr{F}_{4}$

We give examples of hyperbolic groups which contain subgroups that are of type F3 but not of type F4. These groups are obtained by Dehn filling starting from a non-uniform lattice in PO(8, 1) which was previously studied by Italiano, Martelli and Migliorini.

[1]  On the absence of Ahlfors' finiteness theorem for Kleinian groups in dimension three , 1991 .

[2]  Noncoherence of some lattices in Isom.H n , 2006, math/0608415.

[3]  Suyoung Choi,et al.  Multiplicative structure of the cohomology ring of real toric spaces , 2017, Homology, Homotopy and Applications.

[4]  Dawid Kielak Residually finite rationally solvable groups and virtual fibring , 2018, 1809.09386.

[5]  Stephen J. Pride,et al.  Subgroups of small cancellation groups. , 1984 .

[6]  M. Kapovich Noncoherence of arithmetic hyperbolic lattices , 2010, 1005.4135.

[7]  Peripheral fillings of relatively hyperbolic groups , 2006 .

[8]  Jeff Cheeger,et al.  L2-Cohomology and group cohomology , 1986 .

[9]  CAT(0) and CAT(-1) fillings of hyperbolic manifolds , 2008, 0901.0056.

[10]  N. Brady Branched Coverings of Cubical Complexes and Subgroups of Hyperbolic Groups , 1999 .

[11]  S. Gersten Essays in Group Theory , 2011 .

[12]  Sam P. Fisher Improved algebraic fibrings , 2021 .

[13]  L’invariant de Bieri–Neumann–Strebel des groupes fondamentaux des variétés kählériennes , 2006, math/0603038.

[14]  Bruno Martelli,et al.  Hyperbolic 5-manifolds that fiber over $$S^1$$ S 1 , 2021, Inventiones mathematicae.

[15]  A. Vesnin Three-dimensional hyperbolic manifolds of Löbell type , 1987 .

[16]  Hyperbolic groups with finitely presented subgroups not of Type $$F_3$$ F 3 , 2018, 1808.09505.

[17]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[18]  Rémi Coulon Asphericity and small cancellation theory for rotation family of groups , 2009, 0907.4577.

[19]  Noel Brady,et al.  Morse theory and finiteness properties of groups , 1997 .

[20]  J. Cheeger,et al.  Bounds on the von Neumann dimension of $L\sp 2$-cohomology and the Gauss-Bonnet theorem for open manifolds , 1985 .

[21]  Noel Brady,et al.  The Geometry of the Word Problem for Finitely Generated Groups , 2007 .

[22]  Ruth Kellerhals,et al.  The Gauss–Bonnet Formula for Hyperbolic Manifolds of Finite Volume , 2001 .

[23]  Holger Kammeyer L2-invariants of nonuniform lattices in semisimple Lie groups , 2013, 1309.1033.

[24]  J. Ratcliffe,et al.  Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel , 2010, 1009.3231.

[25]  R. Bieri,et al.  Homological dimension of discrete groups , 1981 .

[26]  Nicolas Bergeron,et al.  Hyperplane sections in arithmetic hyperbolic manifolds , 2011, J. Lond. Math. Soc..

[27]  Daniel Groves,et al.  Dehn filling in relatively hyperbolic groups , 2006 .

[28]  Damien Gaboriau,et al.  Invariants ℓ2 de relations d’équivalence et de groupes , 2002 .

[29]  W. Lück L2-Invariants: Theory and Applications to Geometry and K-Theory , 2002 .

[30]  R. Bieri,et al.  Valuations on free resolutions and higher geometric invariants of groups , 1988 .

[31]  A hyperbolic group with a finitely presented subgroup that is not of type $FP_3$ , 2014, 1403.6716.

[32]  D. Wise,et al.  VIRTUALLY FIBERING RIGHT-ANGLED COXETER GROUPS , 2017, Journal of the Institute of Mathematics of Jussieu.

[33]  Brian H. Bowditch,et al.  A 4-dimensional Kleinian group , 1994 .

[34]  I. Agol Criteria for virtual fibering , 2007, 0707.4522.

[35]  W. Lück Dimension theory of arbitrary modules over finite von Neumann algebras and L^2-Betti numbers, I, Foundations , 1998 .

[36]  D. Osin,et al.  Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces , 2011, 1111.7048.

[37]  Ian Agol,et al.  The virtual Haken conjecture , 2012, 1204.2810.

[38]  C. Wall Finiteness conditions for CW-complex I , 1965 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  A. O. Houcine On hyperbolic groups , 2006 .

[41]  Koji Fujiwara An example of a closed 5-manifold of nonpositive curvature that fibers over a circle , 2021 .

[42]  W. Lück Dimension theory of arbitrary modules over finite von Neumann algebras and L^2-Betti numbers, II, Applications to Grothendieck groups, L^2-Euler characteristics and Burnside groups , 1998 .