Design, Analysis, and Application of Immersed Finite Element Methods

[1]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[2]  A. Cheng,et al.  Trefftz and Collocation Methods , 2008 .

[3]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[4]  David A. Steinman,et al.  From image data to computational domains , 2009 .

[5]  Yanping Lin,et al.  A rectangular immersed finite element space for interface problems , 2001 .

[6]  Ralf Massjung,et al.  An Unfitted Discontinuous Galerkin Method Applied to Elliptic Interface Problems , 2012, SIAM J. Numer. Anal..

[7]  A. Paganini Approximate Shape Gradients for Interface Problems , 2015 .

[8]  Tao Lin,et al.  A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods , 2015, J. Sci. Comput..

[9]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[10]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[11]  Y. Gong Immersed-Interface Finite-Element Methods for Elliptic and Elasticity Interface Problems , 2007 .

[12]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[13]  Long Chen,et al.  An interface-fitted mesh generator and virtual element methods for elliptic interface problems , 2017, J. Comput. Phys..

[14]  T. Chan,et al.  Multiple level set methods with applications for identifying piecewise constant functions , 2004 .

[15]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[16]  Victor Isakov,et al.  Local uniqueness in the inverse conductivity problem with one measurement , 1995 .

[17]  Helmut Harbrecht,et al.  On the Numerical Solution of a Shape Optimization Problem for the Heat Equation , 2013, SIAM J. Sci. Comput..

[18]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[19]  Marcus Sarkis,et al.  Higher-order finite element methods for elliptic problems with interfaces , 2015, 1505.04347.

[20]  M. Bendsøe,et al.  Topology optimization of heat conduction problems using the finite volume method , 2006 .

[21]  D. Schnur,et al.  An inverse method for determining elastic material properties and a material interface , 1992 .

[22]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[23]  Théodore Papadopoulo,et al.  A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem , 2010, SIAM J. Sci. Comput..

[24]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[25]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[26]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[27]  Wei Wang,et al.  A Numerical Method for Solving Elasticity Equations with Interfaces. , 2012, Communications in computational physics.

[28]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[29]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[30]  W. Kuperman,et al.  Wave Propagation Theory , 2011 .

[31]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[32]  Christos Davatzikos,et al.  An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects , 2008, Journal of mathematical biology.

[33]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[34]  John Lowengrub,et al.  Microstructural Evolution in Orthotropic Elastic Media , 2000 .

[35]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[36]  Xiaofeng Ren,et al.  On a two-dimensional elliptic problem with large exponent in nonlinearity , 1994 .

[37]  Jihong Zhu,et al.  Topology optimization of heat conduction problem involving design-dependent heat load effect , 2008 .

[38]  Bernardo Cockburn,et al.  Discontinuous Galerkin methods for incompressible elastic materials , 2006 .

[39]  Shan Zhao,et al.  Matched interface and boundary (MIB) for the implementation of boundary conditions in high‐order central finite differences , 2009, International journal for numerical methods in engineering.

[40]  Timon Rabczuk,et al.  Detection of flaws in piezoelectric structures using extended FEM , 2013 .

[41]  Ralf Hiptmair,et al.  Shape Optimization by Pursuing Diffeomorphisms , 2015, Comput. Methods Appl. Math..

[42]  J. P. Agnelli,et al.  On the identification of piecewise constant coefficients in optical diffusion tomography by level set , 2017, ArXiv.

[43]  Masoud Safdari,et al.  A gradient-based shape optimization scheme using an interface-enriched generalized FEM , 2015 .

[44]  Tao Lin,et al.  A Higher Degree Immersed Finite Element Method Based on a Cauchy Extension for Elliptic Interface Problems , 2019, SIAM J. Numer. Anal..

[45]  Zhilin Li,et al.  Immersed interface methods for moving interface problems , 1997, Numerical Algorithms.

[46]  Xu Zhang,et al.  Nonconforming Immersed Finite Element Methods for Interface Problems , 2013 .

[47]  T. Lin,et al.  An Immersed Finite Element Electric Field Solver for Ion Optics Modeling , 2002 .

[48]  Xiaoming He,et al.  A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions , 2016, J. Comput. Phys..

[49]  Antonio André Novotny,et al.  Topological Derivatives in Shape Optimization , 2012 .

[50]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[51]  Z. Wang,et al.  Immersed finite element methods for 4th order differential equations , 2011, J. Comput. Appl. Math..

[52]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[53]  A. Brigo,et al.  The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology , 2002, Journal of molecular recognition : JMR.

[54]  Jin Keun Seo,et al.  A NOTE ON UNIQUENESS AND STABILITY FOR THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT , 2001 .

[55]  Nam H. Kim,et al.  Eulerian shape design sensitivity analysis and optimization with a fixed grid , 2005 .

[56]  Mohamed Ben-Romdhane,et al.  Higher-Order Immersed Finite Element Spaces for Second-Order Elliptic Interface Problems with Quadratic Interface , 2014 .

[57]  M. E. Botkin,et al.  Structural shape optimization with geometric description and adaptive mesh refinement , 1985 .

[58]  Tao Lin,et al.  Higher degree immersed finite element spaces constructed according to the actual interface , 2017, Comput. Math. Appl..

[59]  Waixiang Cao,et al.  Superconvergence of immersed finite element methods for interface problems , 2015, Adv. Comput. Math..

[60]  William R B Lionheart Boundary shape and electrical impedance tomography , 1998 .

[61]  Slimane Adjerid,et al.  A p-th degree immersed finite element for boundary value problems with discontinuous coefficients , 2009 .

[62]  Ruchi Guo A Linear Immersed Finite Element Space Defined by Actual Interface Curve on Triangular Meshes , 2017 .

[63]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[64]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[65]  Marc Dambrine,et al.  Shape Methods for the Transmission Problem with a Single Measurement , 2007 .

[66]  P. Hansbo,et al.  Discontinuous Galerkin and the Crouzeix–Raviart element : application to elasticity , 2003 .

[67]  Raed Kafafy,et al.  Whole Ion Optics Gridlet Simulations Using a Hybrid-Grid Immersed-Finite-Element Particle-in-Cell Code , 2007 .

[68]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[69]  Xiaoming He,et al.  Immersed finite element methods for parabolic equations with moving interface , 2013 .

[70]  Mohamed Masmoudi,et al.  Topological and shape gradient strategy for solving geometrical inverse problems , 2013 .

[71]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[72]  Simona Perotto,et al.  Efficient geometric reconstruction of complex geological structures , 2014, Math. Comput. Simul..

[73]  Slimane Adjerid,et al.  An Immersed Discontinuous Galerkin Method for Acoustic Wave Propagation in Inhomogeneous Media , 2019, SIAM J. Sci. Comput..

[74]  Weiwei Sun,et al.  Quadratic immersed finite element spaces and their approximation capabilities , 2006, Adv. Comput. Math..

[75]  Joyce R. McLaughlin,et al.  Interior elastodynamics inverse problems: shear wave speed reconstruction in transient elastography , 2003 .

[76]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[77]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[78]  Liang Xia,et al.  Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis , 2012 .

[79]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[80]  Tao Lin,et al.  Nonconforming immersed finite element spaces for elliptic interface problems , 2018, Comput. Math. Appl..

[81]  Robert S. Anderssen,et al.  Determination of the transmissivity zonation using a linear functional strategy , 1991 .

[82]  Dominique Leguillon,et al.  Computation of singular solutions in elliptic problems and elasticity , 1987 .

[83]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[84]  Ruchi Guo,et al.  HIGH DEGREE IMMERSED FINITE ELEMENT SPACES BY A LEAST SQUARES METHOD , 2017 .

[85]  Tao Lin,et al.  A Fixed Mesh Method with Immersed Finite Elements for Solving Interface Inverse Problems , 2018, Journal of Scientific Computing.

[86]  Zhilin Li,et al.  An Immersed Finite Element Method for Elasticity Equations with Interfaces , 2005 .

[87]  R. Haftka,et al.  Review of options for structural design sensitivity analysis. Part 1: Linear systems , 2005 .

[88]  Stanley Osher,et al.  A survey on level set methods for inverse problems and optimal design , 2005, European Journal of Applied Mathematics.

[89]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[90]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[91]  Xiaoming He,et al.  Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions , 2011 .

[92]  Stephan Schmidt,et al.  Shape Optimization Using the Finite Element Method on Multiple Meshes with Nitsche Coupling , 2018, SIAM J. Sci. Comput..

[93]  Glen Mullineux,et al.  Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization , 2011 .

[94]  Daniel A. Tortorelli,et al.  A systematic approach to shape sensitivity analysis , 1993 .

[95]  Guo-Wei Wei,et al.  On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method , 2006, J. Comput. Phys..

[96]  Hend Ben Ameur,et al.  Identification of 2D cracks by elastic boundary measurements , 1999 .

[97]  Guo-Wei Wei,et al.  Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces , 2007, J. Comput. Phys..

[98]  Stanley Osher,et al.  Regularization of Ill-Posed Problems Via the Level Set Approach , 1998, SIAM J. Appl. Math..

[99]  T. Lin,et al.  Approximation capabilities of immersed finite element spaces for elasticity Interface problems , 2018, Numerical Methods for Partial Differential Equations.

[100]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[101]  Simona Perotto,et al.  Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT , 2017, J. Comput. Phys..

[102]  M. Burger Levenberg–Marquardt level set methods for inverse obstacle problems , 2004 .

[103]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[104]  M. Burger,et al.  Level set methods for geometric inverse problems in linear elasticity , 2004 .

[105]  Tao Lin,et al.  A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems , 2019, J. Sci. Comput..

[106]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[107]  Victor Isakov,et al.  On uniqueness of recovery of a discontinuous conductivity coefficient , 1988 .

[108]  Jin Keun Seo,et al.  The inverse conductivity problem with one measurement: uniqueness for convex polyhedra , 1994 .

[109]  Xiaoming He,et al.  A selective immersed discontinuous Galerkin method for elliptic interface problems , 2014 .

[110]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[111]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[112]  K. Choi,et al.  A study of design velocity field computation for shape optimal design , 1994 .

[113]  Bangti Jin,et al.  A convergent adaptive finite element method for electrical impedance tomography , 2016, 1608.03170.

[114]  M. Soleimani,et al.  Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data , 2006 .

[115]  Michael Yu Wang,et al.  A study on X-FEM in continuum structural optimization using a level set model , 2010, Comput. Aided Des..

[116]  Thomas P. Wihler Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems , 2006, Math. Comput..

[117]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[118]  Ruben Sevilla,et al.  Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM , 2011 .

[119]  Xiaoming He,et al.  The convergence of the bilinear and linear immersed finite element solutions to interface problems , 2012 .

[120]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[121]  Dan Givoli,et al.  XFEM‐based crack detection scheme using a genetic algorithm , 2007 .

[122]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[123]  T. Lin,et al.  Error estimates for a partially penalized immersed finite element method for elasticity interface problems , 2020 .

[124]  Yalchin Efendiev,et al.  Generalized multiscale finite element method for elasticity equations , 2014 .

[125]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[126]  R. Kohn,et al.  Relaxation of a variational method for impedance computed tomography , 1987 .

[127]  Ruchi Guo,et al.  High degree discontinuous Petrov-Galerkin immersed finite element methods using fictitious elements for elliptic interface problems , 2019, J. Comput. Appl. Math..

[128]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[129]  Bartosz Protas,et al.  A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer , 2013, SIAM J. Sci. Comput..

[130]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[132]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[133]  Mu Lin,et al.  A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR POISSON EQUATION , 2017 .

[134]  Marcus Sarkis,et al.  A Finite Element Method for High-Contrast Interface Problems with Error Estimates Independent of Contrast , 2015, J. Sci. Comput..

[135]  Mark S. Gockenbach,et al.  An Abstract Framework for Elliptic Inverse Problems: Part 2. An Augmented Lagrangian Approach , 2009 .

[136]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[137]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[138]  Yongcun Zhang,et al.  Design of the Heat Conduction Structure Based on the Topology Optimization , 2011 .

[139]  Jinyong Ying,et al.  A new box iterative method for a class of nonlinear interface problems with application in solving Poisson-Boltzmann equation , 2016, J. Comput. Appl. Math..

[140]  Kyung K. Choi,et al.  3‐D shape optimal design and automatic finite element regridding , 1989 .

[141]  Weiwei Sun,et al.  Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems , 2007 .

[142]  K. Kunisch,et al.  Level-set function approach to an inverse interface problem , 2001 .

[143]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[144]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[145]  Khosro Shahbazi,et al.  An explicit expression for the penalty parameter of the interior penalty method , 2022 .

[146]  Tao Lin,et al.  Linear and bilinear immersed finite elements for planar elasticity interface problems , 2012, J. Comput. Appl. Math..

[147]  Kyung K. Choi,et al.  A geometry-based parameterization method for shape design of elastic solids , 1992 .

[148]  Daniel A. Tortorelli,et al.  Optimal design of nonlinear parabolic systems. Part II: Variable spatial domain with applications to casting optimization , 1994 .

[149]  Xuecheng Tai,et al.  A BINARY LEVEL SET MODEL FOR ELLIPTIC INVERSE PROBLEMS WITH DISCONTINUOUS COEFFICIENTS , 2006 .

[150]  Fei Wang,et al.  High-order extended finite element methods for solving interface problems , 2016, Computer Methods in Applied Mechanics and Engineering.

[151]  Tao Lin,et al.  A locking-free immersed finite element method for planar elasticity interface problems , 2013, J. Comput. Phys..

[152]  Zhilin Li,et al.  Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions , 2009 .

[153]  Xuecheng Tai,et al.  A piecewise constant level set method for elliptic inverse problems , 2007 .

[154]  A. Attetkov,et al.  The Optimum Thickness of a Cooled Coated Wall Exposed to Local Pulse‐Periodic Heating , 2001 .

[155]  Zakaria Belhachmi,et al.  Shape sensitivity analysis for an interface problem via minimax differentiability , 2013, Appl. Math. Comput..

[156]  Kye T. Wee,et al.  An Analysis of a Broken P1-Nonconforming Finite Element Method for Interface Problems , 2009, SIAM J. Numer. Anal..

[157]  Haim Waisman,et al.  Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms , 2010 .

[158]  Qing Li,et al.  Evolutionary topology optimization for temperature reduction of heat conducting fields , 2004 .

[159]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[160]  Adrian Be Jan Constructal-theory network of conducting paths for cooling a heat generating volume , 1997 .

[161]  Inverse Scattering and Applications , 1991 .

[162]  Xu Zhang,et al.  A Method of Lines Based on Immersed Finite Elements for Parabolic Moving Interface Problems , 2013 .

[163]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for Stokes interface problems , 2015 .

[164]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[165]  Bo Li,et al.  Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..

[166]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[167]  T. Lin,et al.  HIGHER DEGREE IMMERSED FINITE ELEMENT METHODS FOR SECOND-ORDER ELLIPTIC INTERFACE PROBLEMS , 2014 .

[168]  M. Sasikumar,et al.  Optimization of convective fin systems: a holistic approach , 2002 .

[169]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[170]  Armando Manduca,et al.  Calculating tissue shear modulus and pressure by 2D log-elastographic methods , 2010, Inverse problems.

[171]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[172]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[173]  Manuchehr Soleimani,et al.  Shape based reconstruction of experimental data in 3D electrical capacitance tomography , 2010 .

[174]  Christian Vergara,et al.  A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem , 2011, SIAM J. Sci. Comput..

[175]  M. Romdhane,et al.  Higher-Degree Immersed Finite Elements for Second-Order Elliptic Interface Problems , 2011 .

[176]  Carlos J. S. Alves,et al.  Inverse scattering for elastic plane cracks , 1999 .

[177]  Sining Yu,et al.  Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities , 2007, J. Comput. Phys..

[178]  Juan José Ródenas,et al.  A numerical methodology to assess the quality of the design velocity field computation methods in shape sensitivity analysis , 2004 .

[179]  Xingzhou Yang,et al.  The immersed interface method for elasticity problems with interfaces , 2002 .

[180]  Patrick E. Farrell,et al.  Higher-Order Moving Mesh Methods for PDE-Constrained Shape Optimization , 2017, SIAM J. Sci. Comput..

[181]  Ruchi Guo,et al.  A group of immersed finite-element spaces for elliptic interface problems , 2016, 1612.00919.

[182]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[183]  T. Lin,et al.  ERROR ANALYSIS OF AN IMMERSED FINITE ELEMENT METHOD FOR EULER-BERNOULLI BEAM INTERFACE PROBLEMS , 2017 .

[184]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[185]  Walter Gautschi,et al.  Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.

[186]  G. Allaire,et al.  Shape optimization with a level set based mesh evolution method , 2014 .

[187]  A. Selvadurai,et al.  Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson's Equation , 2000 .

[188]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for the Stokes problem with a moving interface , 2019, J. Comput. Appl. Math..

[189]  Xiaoming He,et al.  A Bilinear Immersed Finite Volume Element Method For the Diffusion Equation with Discontinuous Coefficient , 2009 .

[190]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[191]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[192]  H. Lee,et al.  Identification of geometric shapes and material properties of inclusions in two-dimensional finite bodies by boundary parameterization , 2000 .

[193]  Jan Hegemann,et al.  An Explicit Update Scheme for Inverse Parameter and Interface Estimation of Piecewise Constant Coefficients in Linear Elliptic PDEs , 2013, SIAM J. Sci. Comput..

[194]  Marc Dambrine,et al.  Conformal mapping and inverse conductivity problem with one measurement , 2007 .

[195]  J. Zou,et al.  Some New A Priori Estimates for Second-Order Elliptic and Parabolic Interface Problems , 2002 .

[196]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[197]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[198]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[199]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[200]  Xiaoming He Bilinear Immersed Finite Elements for Interface Problems , 2009 .

[201]  Zhiming Chen,et al.  An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .

[202]  Victor Isakov,et al.  CORRIGENDUM: On the inverse conductivity problem with one measurement , 1990 .