Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations

Abstract Current research in metamaterials design is pushing to fill the gap between mathematical modelling and technological applications. To meet these requirements predictive and computationally effective, numerical tools need to be conceived and applied. In this paper, we describe the performances of a discrete model based on the microstructure architecture [1] and those of a second gradient continuum model [2] for pantographic structures with non-orthogonal fibres comparing them with some experimental results. The interest in these structures resides in the exotic behaviour that they have already shown [3] and their study seems promising. The comparison which we present here shows that, depending on the length scale characterising the structural cell of pantographic sheets, either discrete or continuum model performance and/or behaviour may prevail. Some homogenization interesting problems are listed in the conclusions in the hope that they may be rigorously studied with the most advanced mathematical tools.

[1]  A. Luongo,et al.  Hard loss of stability of Ziegler’s column with nonlinear damping , 2016 .

[2]  Giuseppe Rosi,et al.  Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces , 2015 .

[3]  Luca Placidi,et al.  A review on 2D models for the description of pantographic fabrics , 2016 .

[4]  Flavio Stochino,et al.  On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation , 2016 .

[5]  Victor A. Eremeyev,et al.  Material symmetry group and constitutive equations of micropolar anisotropic elastic solids , 2016 .

[6]  Giuseppe Piccardo,et al.  A direct approach for the evaluation of the conventional modes within the GBT formulation , 2014 .

[7]  Francesco dell’Isola,et al.  Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching , 2015 .

[8]  Ugo Andreaus,et al.  Soft-impact dynamics of deformable bodies , 2013 .

[9]  Stefano Gabriele,et al.  Initial postbuckling behavior of thin-walled frames under mode interaction , 2013 .

[10]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[11]  Ivan Giorgio,et al.  Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model , 2017 .

[12]  A. Morassi,et al.  Reconstructing blockages in a symmetric duct via quasi-isospectral horn operators , 2016 .

[13]  Francesco dell’Isola,et al.  Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies , 2017 .

[14]  Ugo Andreaus,et al.  Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation , 2016 .

[15]  Ivan Giorgio,et al.  Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements , 2015 .

[16]  E. Turco,et al.  FREQUENCY SHIFTS INDUCED BY LARGE DEFORMATIONS IN PLANAR PANTOGRAPHIC CONTINUA , 2015 .

[17]  F. dell’Isola,et al.  Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  E. Turco,et al.  Multiscale 3D mixed FEM analysis of historical masonry constructions , 2017 .

[19]  Francesco dell’Isola,et al.  Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution , 2016 .

[20]  Flavio Stochino,et al.  An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams , 2016 .

[21]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[22]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[23]  T. Lekszycki,et al.  A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses , 2017 .

[24]  Leopoldo Greco,et al.  Wave propagation in pantographic 2D lattices with internal discontinuities , 2014, 1412.3926.

[25]  E. Turco,et al.  Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations , 2016 .

[26]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[27]  Flavio Stochino,et al.  Sardinia radio telescope finite element model updating by means of photogrammetric measurements , 2017 .

[28]  Alfio Grillo,et al.  Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage , 2014 .

[29]  Tomasz Lekszycki,et al.  Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients , 2015 .

[30]  A. Bilotta,et al.  Equilibrium path for elastoplastic pressure-sensitive materials via an effective 3D mixed finite element , 2016 .

[31]  Francesco dell’Isola,et al.  Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence , 2015 .

[32]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[33]  Ivan Giorgio,et al.  A micro‐structural model for dissipation phenomena in the concrete , 2015 .

[34]  MULTIPLE SCALE ANALYSIS FOR DIVERGENCE-HOPF BIFURCATION OF IMPERFECT SYMMETRIC SYSTEMS , 1998 .

[35]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .

[36]  Emilio Turco,et al.  A numerical study on the solution of the Cauchy problem in elasticity , 2009 .

[37]  Francesco dell’Isola,et al.  Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence , 2016 .

[38]  N. Olhoff,et al.  Modelling and identification of viscoelastic properties of vibrating sandwich beams , 1992 .

[39]  Emilio Turco,et al.  Computing Volume Bounds of Inclusions by Eit Measurements , 2007, J. Sci. Comput..

[40]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[41]  N. Rizzi,et al.  A 1D Nonlinear TWB model accounting for in plane cross-section deformation , 2016 .

[42]  Luca Placidi,et al.  A second gradient formulation for a 2D fabric sheet with inextensible fibres , 2016 .

[43]  Andrea Braides,et al.  Interfacial energies on quasicrystals , 2012 .

[44]  M. Cuomo,et al.  Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres , 2016 .

[45]  Angelo Luongo,et al.  Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads , 2013 .

[46]  Antonio Cazzani,et al.  Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model , 2016 .

[47]  Leopoldo Greco,et al.  An isogeometric implicit G1 mixed finite element for Kirchhoff space rods , 2016 .

[48]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[49]  Giuseppe Piccardo,et al.  A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes , 2014 .

[50]  A. Misra,et al.  Granular micromechanics based micromorphic model predicts frequency band gaps , 2015, Continuum Mechanics and Thermodynamics.

[51]  N. Rizzi,et al.  A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis , 2016 .

[52]  Emilio Turco,et al.  Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives , 2017 .

[53]  Angelo Luongo,et al.  Perturbation Methods for Bifurcation Analysis from Multiple Nonresonant Complex Eigenvalues , 1997 .

[54]  Francesco dell’Isola,et al.  Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory , 2013 .

[55]  Francesco dell’Isola,et al.  Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response , 2015 .

[56]  Francesco dell’Isola,et al.  First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities , 2017 .

[57]  Flavio Stochino,et al.  The Sardinia Radio Telescope: A comparison between close-range photogrammetry and finite element models , 2017 .

[58]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[59]  Emilio Turco,et al.  Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields , 2016 .

[60]  Francesco dell’Isola,et al.  Linear pantographic sheets: Asymptotic micro-macro models identification , 2017 .

[61]  Emilio Turco,et al.  Elastoplastic analysis of pressure‐sensitive materials by an effective three‐dimensional mixed finite element , 2017 .

[62]  Emilio Turco Identification of Axial Forces on Statically Indeterminate Pin-Jointed Trusses by a Nondestructive Mechanical Test , 2013 .

[63]  Emilio Turco,et al.  Numerical sensitivity analysis of corrosion detection† , 2017 .

[64]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[65]  M. Fagone,et al.  Experimental global analysis of the efficiency of carbon fiber anchors applied over CFRP strengthened bricks , 2014 .

[66]  J. Ganghoffer,et al.  Construction of micropolar continua from the asymptotic homogenization of beam lattices , 2012 .

[67]  Ivan Giorgio,et al.  Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations , 2016 .

[68]  E. Turco,et al.  Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence , 2016 .

[69]  Emilio Turco,et al.  Performance of a high‐continuity finite element in three‐dimensional elasticity , 2010 .

[70]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[71]  Tomasz Lekszycki,et al.  On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets , 2016 .

[72]  Emilio Turco,et al.  Evaluating the volume of a hidden inclusion in an elastic body , 2007 .

[73]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[74]  Francesco dell’Isola,et al.  Pattern formation in the three-dimensional deformations of fibered sheets , 2015 .

[75]  N. Rizzi,et al.  A 1D higher gradient model derived from Koiter’s shell theory , 2016 .

[76]  Francesco dell’Isola,et al.  Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models , 2016 .

[77]  L. Placidi,et al.  Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity , 2017 .