Unveiling structure-property relationships in Sr2Fe(1.5)Mo(0.5)O(6-δ), an electrode material for symmetric solid oxide fuel cells.

We characterize experimentally and theoretically the promising new solid oxide fuel cell electrode material Sr(2)Fe(1.5)Mo(0.5)O(6-δ) (SFMO). Rietveld refinement of powder neutron diffraction data has determined that the crystal structure of this material is distorted from the ideal cubic simple perovskite, instead belonging to the orthorhombic space group Pnma. The refinement revealed the presence of oxygen vacancies in the as-synthesized material, resulting in a composition of Sr(2)Fe(1.5)Mo(0.5)O(5.90(2)) (δ = 0.10(2)). DFT+U theory predicts essentially the same concentration of oxygen vacancies. Theoretical analysis of the electronic structure allows us to elucidate the origin of this nonstoichiometry and the attendant mixed ion-electron conductor character so important for intermediate temperature fuel cell operation. The ease with which SFMO forms oxygen vacancies and allows for facile bulk oxide ion diffusivity is directly related to a strong hybridization of the Fe d and O p states, which is also responsible for its impressive electronic conductivity.

[1]  Michele Pavone,et al.  Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials , 2011 .

[2]  F. Chen,et al.  Sr 2 Fe 1.5 Mo 0.5 O 6-δ as a Regenerative Anode for solid Oxide Fuel Cells , 2011 .

[3]  Emily A. Carter,et al.  Effect of Antisite Defects on the Formation of Oxygen Vacancies in Sr2FeMoO6: Implications for Ion and Electron Transport , 2011 .

[4]  F. Chen,et al.  Sr2Fe1.5Mo0.5O6 as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells with La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte , 2011 .

[5]  F. Chen,et al.  A Novel Electrode Material for Symmetrical SOFCs , 2010, Advanced materials.

[6]  Juan Carlos Ruiz-Morales,et al.  Engineering of materials for solid oxide fuel cells and other energy and environmental applications , 2010 .

[7]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[8]  C. Ritter,et al.  Electron doping versus antisite defects: Structural and magnetic properties of Sr2−xLaxCrMoO6 and Sr2−xLaxCr1+x/2Mo1−x/2O6 perovskites , 2010 .

[9]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[10]  P. Slater,et al.  New Chemical Systems for Solid Oxide Fuel Cells , 2010 .

[11]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[12]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[13]  J. Alonso,et al.  Structure, thermal stability and electrical properties of Ca(V0.5Mo0.5)O3 as solid oxide fuel cell anode , 2009 .

[14]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  S. Jiang,et al.  Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review , 2008 .

[16]  Emily A. Carter,et al.  Challenges in Modeling Materials Properties Without Experimental Input , 2008, Science.

[17]  Emily A Carter,et al.  Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. , 2008, The Journal of chemical physics.

[18]  Emily A Carter,et al.  Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. , 2008, Annual review of physical chemistry.

[19]  Emily A. Carter,et al.  Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations , 2007 .

[20]  M. T. Casais,et al.  Preparation, structural study from neutron diffraction data and magnetism of the disordered perovskite Ca(Cr0.5Mo0.5)O3 , 2006 .

[21]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[22]  J. Alonso,et al.  Neutron diffraction study and magnetotransport properties of stoichiometric CaMoO3 perovskite prepared by a soft-chemistry route , 2006 .

[23]  M. Rȩkas,et al.  Defect Chemistry of (La,Sr)MnO3 , 2005 .

[24]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[25]  J. Irvine,et al.  Structural and Electrical Properties of the Perovskite Oxide Sr2FeNbO6 , 2004 .

[26]  Jingkui Liang,et al.  Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2FexMo2-xO6 , 2003 .

[27]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[28]  P M Woodward,et al.  Prediction of the crystal structures of perovskites using the software program SPuDS. , 2001, Acta crystallographica. Section B, Structural science.

[29]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[30]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[31]  Keitaro Tezuka,et al.  Magnetic Susceptibilities and Mssbauer Spectra of Perovskites A 2FeNbO 6 ( A=Sr, Ba) , 2000 .

[32]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[33]  J. R. Jurado,et al.  Electrochemical permeability of Sr0.7(Ti,Fe)O3−δ materials , 1999 .

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[35]  H. Tuller Semiconduction and mixed ionic-electronic conduction in nonstoichiometric oxides: impact and control , 1997 .

[36]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[37]  P. Woodward Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces , 1997 .

[38]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[43]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[44]  P. Battle,et al.  The crystal structure and magnetic properties of SrLaFeSnO6 and SrLaNiSbO6 , 1992 .

[45]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[46]  R. Huggins Solid State Ionics , 1989 .

[47]  H. Tagawa,et al.  Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ , 1989 .

[48]  W. Goddard,et al.  Early- versus late-transition-metal-oxo bonds: the electronic structure of oxovanadium(1+) and oxoruthenium(1+) , 1988 .

[49]  H. Iwahara,et al.  Mixed conduction and oxygen permeation in the substituted oxides for CaTiO3 , 1988 .

[50]  J. Beauchamp,et al.  Gas-phase studies of alkene oxidation by transition-metal oxides. Ion-beam studies of CrO+. , 1986, Journal of the American Chemical Society.

[51]  J. Mizusaki,et al.  Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−° , 1985 .

[52]  J. B. Anderson,et al.  Crystal structure of ferric molybdate, Fe2(MoO4)3 , 1980 .

[53]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[54]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[55]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[56]  S. Geller,et al.  Crystal Structure of Gadolinium Orthoferrite, GdFeO3 , 1956 .

[57]  Paul Robinson,et al.  Grad school or industry: What's your next step? , 2010 .

[58]  石原 達己,et al.  Perovskite oxide for solid oxide fuel cells , 2009 .

[59]  T. Ishihara Perovskite Oxide for Solid Oxide Fuel Cells , 2009 .

[60]  J. Kilner,et al.  Diffusivity of the Oxide Ion in Perovskite Oxides , 2009 .

[61]  P. Battle,et al.  Neutron diffraction study of the influence of structural disorderon the magnetic properties of Sr2FeMO6 (M=Ta,Sb) , 1997 .

[62]  M. D. Mathews,et al.  High-temperature X-ray diffractometric studies of LaCrO3 , 1991 .

[63]  R. Bader Atoms in molecules : a quantum theory , 1990 .