Immunolocalization of keratin-associated beta-proteins (beta-keratins) in scales of the reptiles Sphenodon punctatus indicates that different beta-proteins are present in beta- and alpha-layers.

[1]  L. Dalla Valle,et al.  Distribution of specific keratin-associated beta-proteins (beta-keratins) in the epidermis of the lizard Anolis carolinensis helps to clarify the process of cornification in lepidosaurians. , 2012, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[2]  D. Parry,et al.  The structural basis of the filament-matrix texture in the avian/reptilian group of hard β-keratins. , 2011, Journal of structural biology.

[3]  A. Nardi,et al.  Forty keratin-associated beta-proteins (beta-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis carolinensis. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[4]  A. Nardi,et al.  Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes , 2009, Journal of anatomy.

[5]  L. Dalla Valle,et al.  The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins. , 2007, Journal of proteome research.

[6]  L. Alibardi,et al.  Distribution and Characterization of Keratins in the Epidermis of the Tuatara (Sphenodon punctatus; Lepidosauria, Reptilia) , 2006, Zoological science.

[7]  L. Alibardi Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. , 2006, International review of cytology.

[8]  L. Alibardi Formation of the corneous layer in the epidermis of the tuatara (Sphenodon punctatus, Sphenodontida, Lepidosauria, Reptilia). , 2004, Zoology.

[9]  N. Alexander Comparison of α and β keratin in reptiles , 1970, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[10]  L. Alibardi,et al.  Observations on the histochemistry and ultrastructure of the epidermis of the tuatara, Sphenodon punctatus (Sphenodontida, Lepidosauria, Reptilia): A contribution to an understanding of the lepidosaurian epidermal generation and the evolutionary origin of the squamate shedding complex , 2003, Journal of morphology.

[11]  L. Alibardi Immunoreactivity of alpha- and beta-layers in lizard epidermis , 2002 .

[12]  Travis Glenn,et al.  The Expression of Beta (β) Keratins in the Epidermal Appendages of Reptiles and Birds1 , 2000 .

[13]  L. Alibardi Keratohyalin-like granules in embryonic and regenerating epidermis of lizards and Sphenodon punctatus (Reptilia, Lepidosauria) , 1999 .

[14]  B. Tandler,et al.  Ultrastructural contributions to an understanding of the cellular mechanisms involved in lizard skin shedding with comments on the function and evolution of a unique Lepidosaurian phenomenon , 1998, Journal of morphology.

[15]  D A Parry,et al.  The molecular structure of reptilian keratin. , 1996, International journal of biological macromolecules.

[16]  L. F. Baptista,et al.  Ultrastructural organization of avian stratum corneum lipids as the basis for facultative cutaneous waterproofing , 1996, Journal of morphology.

[17]  E. Fuchs,et al.  Epidermal differentiation: the bare essentials , 1990, The Journal of cell biology.

[18]  A. Brush,et al.  Keratin diversity in the reptilian epidermis , 1983 .

[19]  P. Maderson,et al.  Ultrastructural contributions to the identification of cell types in the lizard epidermal generation , 1972, Journal of morphology.

[20]  P. Maderson,et al.  Morphological and biophysical identification of fibrous proteins in the amniote epidermis. , 1970, The Journal of experimental zoology.

[21]  Maderson Pf Observations on the epidermis of the tuatara (Sphenodon punctatus). , 1968 .