Ideal Observer Analysis

Ideal Observer Analysis Wilson S. Geisler University of Texas at Austin (to appear in Visual Neurosciences, MIT press) 1.0 Introduction................................................................................................................... 1 2.0 Basic concepts and formulas......................................................................................... 2 2.1 Bayesian ideal observers........................................................................................... 3 2.2 Constrained Bayesian ideal observers ...................................................................... 5 3.0 Detection, discrimination and identification................................................................. 7 3.1 Optimal discrimination given statistically independent sources of information ...... 8 3.2 Photon noise............................................................................................................ 10 3.3 Optics and photoreceptors....................................................................................... 14 3.3 Neural factors in the retina and primary visual cortex............................................ 18 3.4 Pixel noise, neural noise and central efficiency...................................................... 21 4.0 Natural scene statistics and natural selection.............................................................. 23 4.1 Maximum fitness ideal observers ........................................................................... 25 4.2 Bayesian natural selection....................................................................................... 27 5.0 Conclusion .................................................................................................................. 29 6.0 References................................................................................................................... 29

[1]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[2]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[3]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[4]  H B BARLOW,et al.  Increment thresholds at low intensities considered as signal/noise discriminations , 1957, The Journal of physiology.

[5]  T. Birdsall,et al.  Definitions of d' and [nu] as psychophysical measures , 1958 .

[6]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[7]  W A Rushton,et al.  The rod increment threshold during dark adaptation in normal and rod monochromat. , 1965, The Journal of physiology.

[8]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[9]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[10]  D. H. Kelly Adaptation effects on spatio-temporal sine-wave thresholds. , 1972, Vision research.

[11]  J. J. Vos,et al.  An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts. , 1972, Vision research.

[12]  J. L. Brown Visual Sensitivity , 1974 .

[13]  H. Barlow The efficiency of detecting changes of density in random dot patterns , 1978, Vision Research.

[14]  R. F. Wagner,et al.  Efficiency of human visual signal discrimination. , 1981, Science.

[15]  G. Westheimer The spatial grain of the perifoveal visual field , 1982, Vision Research.

[16]  R. F. Wagner,et al.  Human Signal Detection Performance For Noisy Medical Images , 1982, Other Conferences.

[17]  W S Geisler,et al.  Physical limits of acuity and hyperacuity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[18]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[19]  James O. Berger,et al.  Statistical Decision Theory and Bayesian Analysis, Second Edition , 1985 .

[20]  H. Barrett,et al.  Effect of noise correlation on detectability of disk signals in medical imaging. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[21]  W. Geisler,et al.  Ideal discriminators in spatial vision: two-point stimuli. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[22]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[23]  G. Legge,et al.  Contrast discrimination in noise. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[24]  D. Kersten Statistical efficiency for the detection of visual noise , 1987, Vision Research.

[25]  H H Barrett,et al.  Addition of a channel mechanism to the ideal-observer model. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[26]  M. Banks,et al.  Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[27]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[28]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[29]  J. Lythgoe,et al.  Visual pigments and the acquisition of visual information. , 1989, The Journal of experimental biology.

[30]  D. Pelli The quantum efficiency of vision , 1990 .

[31]  S J Anderson,et al.  Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[32]  Jannick P. Rolland,et al.  Linear discriminants and image quality , 1991, Image Vis. Comput..

[33]  Wilson S. Geisler,et al.  The relative contributions of pre-neural and neural factors to areal summation in the fovea , 1991, Vision Research.

[34]  N. Graham,et al.  Quantal noise and decision rules in dynamic models of light adaptation , 1992, Vision Research.

[35]  K. Purpura,et al.  Response variability in retinal ganglion cells of primates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Brainard,et al.  Efficiency in detection of isoluminant and isochromatic interference fringes. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[38]  Philip T. Kortum,et al.  Adaptation mechanisms in spatial vision—ii. Flash thresholds and background adaptation , 1995, Vision Research.

[39]  A. Ahumada Perceptual Classification Images from Vernier Acuity Masked by Noise , 1996 .

[40]  Wilson S. Geisler,et al.  Visual detection following retinal damage: predictions of an inhomogeneous retino-cortical model , 1996, Photonics West.

[41]  M. Vorobyev,et al.  Colour vision as an adaptation to frugivory in primates , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  D. G. Albrecht,et al.  Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification , 1997, Visual Neuroscience.

[43]  J. Mollon,et al.  Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey , 1998, Vision Research.

[44]  S. Zucker,et al.  Evidence for boundary-specific grouping , 1998, Vision Research.

[45]  Craig K. Abbey,et al.  Estimation of human-observer templates in two-alternative forced-choice experiments , 1999, Medical Imaging.

[46]  Thomas W. Cronin,et al.  Spectral tuning of dichromats to natural scenes , 2000, Vision Research.

[47]  P. Bennett,et al.  Deriving behavioural receptive fields for visually completed contours , 2000, Current Biology.

[48]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[50]  Paul R. Schrater,et al.  Vision, Psychophysics and Bayes , 2001 .

[51]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[52]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  W. Geisler,et al.  Bayesian natural selection and the evolution of perceptual systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.