Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids.

2.1. UNIFAC Models 1421 2.1.1. History of Group Contribution Methods 1422 2.1.2. The Modified UNIFAC Model 1422 2.1.3. The γ∞-Based UNIFAC Model 1423 2.2. MOSCED and SPACE Models 1423 2.3. CAMD 1424 2.3.1. CAMD Program 1425 2.3.2. Case Study 1426 2.4. DISQUAC Model 1427 2.5. Pierotti−Deal−Derr Model 1428 2.6. Parachor Model 1428 2.7. Weimer−Prausnitz Model 1428 2.8. Prausnitz and Anderson Theory 1428 2.8.1. Physical Force 1429 2.8.2. Chemical Force 1429 2.9. Group Contribution Equations of State 1430 3. Solvent−Solid Salt Systems 1431 3.1. The Extended UNIFAC Models 1431 3.1.1. Model of Kikic et al. 1431 3.1.2. Model of Achard et al. 1432 3.1.3. Model of Yan et al. 1432 3.2. Scaled Particle Theory 1433 3.2.1. Description of Theory 1433 3.2.2. Salt Effect on Relative Volatility at Infinite Dilution 1434

[1]  V. Krukonis,et al.  Supercritical fluid technology , 1985 .

[2]  J. González,et al.  Thermodynamics of liquid mixtures containing a very strongly polar compound: Part 6. DISQUAC characterization of N,N-dialkylamides , 2004 .

[3]  Joel H. Hildebrand,et al.  The solubility of nonelectrolytes , 1964 .

[4]  Y.V.C. Rao Chemical Engineering Thermodynamics , 1997 .

[5]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[6]  Andrzej Anderko,et al.  Modelling Phase Equilibria: Thermodynamic Background and Practical Tools , 1992 .

[7]  J. González,et al.  Proximity effects and cyclization in oxaalkanes + CCl4 mixtures disquac characterization of the Cl-O interactions. Comparison with Dortmund UNIFAC results , 1999 .

[8]  J. González,et al.  Thermodynamics of binary mixtures containing organic carbonates: Part XI. SLE measurements for systems of diethyl carbonate with long n-alkanes: comparison with DISQUAC and modified UNIFAC predictions☆ , 1991 .

[9]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[10]  Josef Novák,et al.  Liquid-Liquid Equilibria , 1987 .

[11]  E. J. Hoffman Azeotropic and extractive distillation , 1964 .

[12]  Michael L. Michelsen,et al.  A Flory–Huggins model based on the Hansen solubility parameters , 2002 .

[13]  A. Sereno,et al.  Measurement and prediction of water activity in electrolyte solutions by a modified ASOG group contribution method , 1997 .

[14]  R. Danner,et al.  Prediction of carbon dioxide solubility in polymers based on a group-contribution equation of state , 2003 .

[15]  J. González,et al.  Thermodynamics of mixtures with strongly negative deviations from Raoult’s law , 2000 .

[16]  Jozef Bicerano,et al.  Prediction of Polymer Properties , 1996 .

[17]  Gary R. List,et al.  Supercritical fluid technology in oil and lipid chemistry , 1996 .

[18]  Andreas Klamt,et al.  COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics , 2005 .

[19]  M. Michelsen,et al.  Modeling of multicomponent vapor–liquid equilibria for polymer–solvent systems , 2004 .

[20]  H. Kehiaian,et al.  Alkyl methanoates + benzene binary mixtures: New VLE measurements and DISQUAC analysis of thermodynamic properties , 1997 .

[21]  Peter Wasserscheid,et al.  Ionic Liquids in Synthesis , 2002 .

[22]  R. Danner,et al.  Applications of the group-contribution, lattice-fluid equation of state , 2002 .

[23]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[24]  Biaohua Chen,et al.  Special Distillation Processes , 2005 .

[25]  George Wypych,et al.  Handbook of Solvents , 2000 .

[26]  Ernest J. Henley,et al.  Separation Process Principles , 1998 .

[27]  Kazuo Kojima,et al.  Prediction of vapor-liquid equilibria by the ASOG method , 1979 .

[28]  T. Reed,et al.  Applied statistical mechanics : thermodynamic and transport properties of fluids , 1973 .