Adaptive Road Recognition and Ego-state Tracking in the Presence of Obstacles

An approach to road recognition and ego-state tracking in monocular image sequences of traffic scenes is described. The main contribution of this paper is the adaptive recognition scheme, which deals with competitive road hypotheses, and its application in several processing steps of an image sequence analysis system. No manual initialization of the tracked road is required and the change of the road type is allowed. The road parameters to be recognized are the road width, road lane number and road curvature. For exact estimation of road curvature the translational and rotational velocities of the ego-car are assumed to be available. The estimated ego-state parameters are the camera orientation (which is derived due to vanishing point tracking) and the camera position relative to the road center line.

[1]  Markus Maurer,et al.  A compact vision system for road vehicle guidance , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[2]  Ernst D. Dickmanns,et al.  Recursive 3-D Road and Relative Ego-State Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hans-Hellmut Nagel,et al.  Model-based object tracking in monocular image sequences of road traffic scenes , 1993, International Journal of Computer 11263on.

[4]  lodzimierz Kasprzak,et al.  Ground Plane Object Tracking under Egomotion , 1995 .

[5]  Dean Pomerleau,et al.  Rapidly Adapting Artificial Neural Networks for Autonomous Navigation , 1990, NIPS.

[6]  C. Thorpe,et al.  Explicit models for robot road following , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[7]  C. Vision-based Vehicle Guidance , 1992, Springer Series in Perception Engineering.

[8]  B. T. Thomas,et al.  Finding road lane boundaries for vision-guided vehicle navigation , 1992 .

[9]  Terry Caelli,et al.  Recovery of the 3-D location and motion of a rigid object through camera image (An Extended Kalman Filter Approach) , 1989, International Journal of Computer Vision.

[10]  Ramesh Jain,et al.  A parallel architecture for curvature-based road scene classification , 1992 .

[11]  Karl Brammer,et al.  Kalman-Bucy-Filter: Deterministische Beobachtung und stochastische Filterung , 1993 .

[12]  Shu-jun Zhang,et al.  A Real-time Plan-view Method For Following Bending Roads , 1993, Proceedings of the Intelligent Vehicles '93 Symposium.

[13]  Volker Graefe,et al.  Vision For Intelligent Road Vehicles , 1993, Proceedings of the Intelligent Vehicles '93 Symposium.

[14]  G. Schmidt Brammer, K. / Siffling, G., Kalman‐Bucy‐Filter, Deterministische Beobachtung und stochastische Filterung, München. R. Oldenbourg Verlag. 1975. 232 S., 22 Abb., DM 30,‐. (Reihe: Methoden der Regelungstechnik) . , 1977 .

[15]  Takeo Kanade,et al.  An Approach to Knowledge-Based Interpretation of Outdoor Natural Color Road Scenes , 1990 .

[16]  Heinrich Niemann,et al.  MOVING SEGMENT DETECTION IN MONOCULAR IMAGE SEQUENCES UNDER EGOMOTION , 1994 .

[17]  Dean A. Pomerleau,et al.  RALPH: rapidly adapting lateral position handler , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[18]  Heinrich Niemann,et al.  A robust cognitive approach to traffic scene analysis , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[19]  Dean A. Pomerleau,et al.  Neural Networks For Intelligent Vehicles , 1993, Proceedings of the Intelligent Vehicles '93 Symposium.

[20]  Heinrich Niemann,et al.  Adaptive Road Parameter Estimation in Monocular Image Sequence , 1994, BMVC.

[21]  Erik L. Dagless,et al.  Road edge tracking for robot road following: a real-time implementation , 1990, Image Vis. Comput..

[22]  Donald B. Gennery,et al.  Visual tracking of known three-dimensional objects , 1992, International Journal of Computer Vision.

[23]  Dieter Koller Detektion, Verfolgung und Klassifikation bewegter Objekte in monokularen Bildfolgen am Beispiel von Straßenverkehrsszenen , 1992, DISKI.