Human fronto-parietal and parieto-hippocampal pathways represent behavioral priorities in multiple spatial reference frames

We represent behaviorally relevant information in different spatial reference frames in order to interact effectively with our environment. For example, we need an egocentric (e.g., body-centered) reference frame to specify limb movements and an allocentric (e.g., world-centered) reference frame to navigate from one location to another. Posterior parietal cortex (PPC) is vital for performing transformations between these different coordinate systems. Here, we review evidence for multiple pathways in the human brain, from PPC to motor, premotor, and supplementary motor areas, as well as to structures in the medial temporal lobe. These connections are important for transformations between egocentric reference frames to facilitate sensory-guided action, or from egocentric to allocentric reference frames to facilitate spatial navigation.

[1]  Ivan Toni,et al.  Perceptuo-Motor Interactions during Prehension Movements , 2008, The Journal of Neuroscience.

[2]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[3]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[4]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[5]  G. Rizzolatti,et al.  Coding of peripersonal space in inferior premotor cortex (area F4). , 1996, Journal of neurophysiology.

[6]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[7]  Mohammad Dastjerdi,et al.  Numerical processing in the human parietal cortex during experimental and natural conditions , 2013, Nature Communications.

[8]  Ravi S. Menon,et al.  Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas , 2003, Experimental Brain Research.

[9]  Jonathan D. Nelson,et al.  Multiple Parietal Reach Regions in Humans: Cortical Representations for Visual and Proprioceptive Feedback during On-Line Reaching , 2009, The Journal of Neuroscience.

[10]  M. Perenin,et al.  Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. , 1988, Brain : a journal of neurology.

[11]  Jody C Culham,et al.  Behavioral / Systems / Cognitive Functional Magnetic Resonance Imaging Reveals the Neural Substrates of Arm Transport and Grip Formation in Reach-to-Grasp Actions in Humans , 2010 .

[12]  D. Somers,et al.  Hemispheric Asymmetry in Visuotopic Posterior Parietal Cortex Emerges with Visual Short-Term Memory Load , 2010, The Journal of Neuroscience.

[13]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[14]  S. Kastner,et al.  Mechanisms of Spatial Attention Control in Frontal and Parietal Cortex , 2010, The Journal of Neuroscience.

[15]  Sabine Kastner,et al.  Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[16]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[17]  Richard A. Andersen,et al.  FMRI evidence for a 'parietal reach region' in the human brain , 2003, Experimental Brain Research.

[18]  Scott T. Grafton,et al.  Human Posterior Parietal Cortex Flexibly Determines Reference Frames for Reaching Based on Sensory Context , 2010, Neuron.

[19]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[20]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[21]  L. Fogassi,et al.  Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. , 2006, Journal of neurophysiology.

[22]  Joseph S. Gati,et al.  Eye Position Signal Modulates a Human Parietal Pointing Region during Memory-Guided Movements , 2000, The Journal of Neuroscience.

[23]  Benjamin J. Tamber-Rosenau,et al.  Decoding cognitive control in human parietal cortex , 2009, Proceedings of the National Academy of Sciences.

[24]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[25]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[26]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[27]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[28]  H. Sakata,et al.  Deficit of hand preshaping after muscimol injection in monkey parietal cortex , 1994, Neuroreport.

[29]  M. D’Esposito,et al.  Topographical disorientation: a synthesis and taxonomy. , 1999, Brain : a journal of neurology.

[30]  Sabine Kastner,et al.  Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex. , 2013, Journal of neurophysiology.

[31]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[32]  Timothy Edward John Behrens,et al.  Connection patterns distinguish 3 regions of human parietal cortex. , 2006, Cerebral cortex.

[33]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[34]  Y. Saalmann,et al.  Functional and structural architecture of the human dorsal frontoparietal attention network , 2013, Proceedings of the National Academy of Sciences.

[35]  S. Dehaene,et al.  Interactions between number and space in parietal cortex , 2005, Nature Reviews Neuroscience.

[36]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[37]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[38]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[39]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[40]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[41]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[42]  Mark D'Esposito,et al.  Top-down flow of visual spatial attention signals from parietal to occipital cortex. , 2009, Journal of vision.

[43]  Alexandre Pouget,et al.  Basis Functions for Object-Centered Representations , 2003, Neuron.

[44]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[45]  Bruno B Averbeck,et al.  Representing spatial relationships in posterior parietal cortex: single neurons code object-referenced position. , 2007, Cerebral cortex.

[46]  M. Goldberg,et al.  Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. , 2006, Progress in brain research.

[47]  E. Spelke,et al.  Sources of mathematical thinking: behavioral and brain-imaging evidence. , 1999, Science.

[48]  Joshua W. Brown,et al.  Monitoring and Control of Action by the Frontal Lobes , 2002, Neuron.

[49]  C. Kennard,et al.  Functional role of the supplementary and pre-supplementary motor areas , 2008, Nature Reviews Neuroscience.

[50]  Gregory C. DeAngelis,et al.  Diverse Spatial Reference Frames of Vestibular Signals in Parietal Cortex , 2013, Neuron.

[51]  C D Frith,et al.  Space-based and object-based visual attention: shared and specific neural domains. , 1997, Brain : a journal of neurology.

[52]  Paul B. Johnson,et al.  The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. , 1996, Cerebral cortex.

[53]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[54]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[55]  A. Pouget,et al.  Reference frames for representing visual and tactile locations in parietal cortex , 2005, Nature Neuroscience.

[56]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and Ventral Subregions with Anatomical and Functional Specializations , 2007, The Journal of Neuroscience.

[57]  Lawrence H Snyder,et al.  Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex , 2010, Proceedings of the National Academy of Sciences.

[58]  Gereon R. Fink,et al.  Human medial intraparietal cortex subserves visuomotor coordinate transformation , 2004, NeuroImage.

[59]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[60]  Byron M. Yu,et al.  Reference frames for reach planning in macaque dorsal premotor cortex. , 2007, Journal of neurophysiology.

[61]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[62]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[63]  Dora E Angelaki,et al.  Functional Specializations of the Ventral Intraparietal Area for Multisensory Heading Discrimination , 2013, The Journal of Neuroscience.

[64]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[65]  Melina R. Uncapher,et al.  Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. , 2014, Cerebral cortex.

[66]  R. Andersen,et al.  Dorsal Premotor Neurons Encode the Relative Position of the Hand, Eye, and Goal during Reach Planning , 2006, Neuron.

[67]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[68]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[69]  Christopher A. Buneo,et al.  Direct visuomotor transformations for reaching , 2002, Nature.

[70]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[71]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[72]  Alexandra Battaglia-Mayer,et al.  Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones. , 2002, Brain : a journal of neurology.

[73]  Kaustubh Supekar,et al.  Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. , 2010, Cerebral cortex.

[74]  Carl R Olson,et al.  Brain representation of object-centered space in monkeys and humans. , 2003, Annual review of neuroscience.

[75]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[76]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[77]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[78]  F Bremmer,et al.  Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. , 1998, Journal of neurophysiology.

[79]  Philip N. Sabes,et al.  Heterogeneous Representations in the Superior Parietal Lobule Are Common across Reaches to Visual and Proprioceptive Targets , 2011, The Journal of Neuroscience.

[80]  R Caminiti,et al.  Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  Jonathan R. Whitlock,et al.  Navigating from hippocampus to parietal cortex , 2008, Proceedings of the National Academy of Sciences.

[82]  G. Rizzolatti,et al.  Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. , 2001, Brain : a journal of neurology.

[83]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[84]  A. Berthoz,et al.  Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location , 2004, Journal of Cognitive Neuroscience.