Dynamic mutual information similarity based transient process identification and fault detection

[1]  Zhiqiang Ge,et al.  Distributed model projection based transition processes recognition and quality-related fault detection , 2016 .

[2]  S. Joe Qin,et al.  Data-driven root cause diagnosis of faults in process industries , 2016, Chemometrics and Intelligent Laboratory Systems.

[3]  Junghui Chen,et al.  Auto-Switch Gaussian Process Regression-Based Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions , 2015 .

[4]  Johan A. K. Suykens,et al.  Enhancing Dynamic Soft Sensors based on DPLS: a Temporal Smoothness Regularization Approach , 2015 .

[5]  Zhiqiang Ge,et al.  Semi-supervised PLVR models for process monitoring with unequal sample sizes of process variables and quality variables , 2015 .

[6]  Ahmet Palazoglu,et al.  An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding , 2013 .

[7]  Yi Liu,et al.  Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes , 2013 .

[8]  Yingwei Zhang,et al.  Modeling and monitoring of multimode process based on subspace separation , 2013 .

[9]  Furong Gao,et al.  Review of Recent Research on Data-Based Process Monitoring , 2013 .

[10]  Dimitris Kugiumtzis,et al.  Nearest neighbor estimate of conditional mutual information in feature selection , 2012, Expert Syst. Appl..

[11]  Mudassir M. Rashid,et al.  A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring , 2012 .

[12]  H. Shi,et al.  Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models , 2012 .

[13]  Mudassir M. Rashid,et al.  Hidden Markov Model Based Adaptive Independent Component Analysis Approach for Complex Chemical Process Monitoring and Fault Detection , 2012 .

[14]  Zhiqiang Ge,et al.  Utilizing transition information in online quality prediction of multiphase batch processes , 2012 .

[15]  Fuli Wang,et al.  Multimode Process Monitoring Based on Mode Identification , 2012 .

[16]  Ahmet Palazoglu,et al.  Transition Process Modeling and Monitoring Based on Dynamic Ensemble Clustering and Multiclass Support Vector Data Description , 2011 .

[17]  Hong-Goo Kang,et al.  Estimating redundancy information of selected features in multi-dimensional pattern classification , 2011, Pattern Recognit. Lett..

[18]  Donghua Zhou,et al.  Total projection to latent structures for process monitoring , 2009 .

[19]  S. Qin,et al.  Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models , 2008 .

[20]  Ignacio E. Grossmann,et al.  Simultaneous cyclic scheduling and optimal control of polymerization reactors , 2007 .

[21]  A. Palazoglu,et al.  Cluster analysis for autocorrelated and cyclic chemical process data , 2007 .

[22]  Ahmet Palazoglu,et al.  A cluster aggregation scheme for ozone episode selection in the San Francisco, CA Bay Area , 2006 .

[23]  W. Ray,et al.  Dynamic modeling of polyethylene grade transitions in fluidized bed reactors employing nickel-diimine catalysts , 2006 .

[24]  W. Ray,et al.  Kinetic Modeling and Prediction of Polymer Properties for Ethylene Polymerization over Nickel Diimine Catalysts , 2005 .

[25]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Theodora Kourti,et al.  Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start‐ups and grade transitions , 2003 .

[27]  S. Wold,et al.  Orthogonal projections to latent structures (O‐PLS) , 2002 .

[28]  S. Joe Qin,et al.  Determining the number of principal components for best reconstruction , 1998 .

[29]  Yunbing Huang,et al.  Isolation enhanced principal component analysis , 1998 .

[30]  Chonghun Han,et al.  Real-time monitoring for a process with multiple operating modes , 1998 .

[31]  Bhupinder S. Dayal,et al.  Improved PLS algorithms , 1997 .

[32]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[33]  Hongyuan Zha,et al.  Entropy-based fuzzy support vector machine for imbalanced datasets , 2017, Knowl. Based Syst..

[34]  Tianyou Chai,et al.  Dynamic time warping based causality analysis for root-cause diagnosis of nonstationary fault processes , 2015 .

[35]  Ahmet Palazoglu,et al.  Process pattern construction and multi-mode monitoring , 2012 .

[36]  Junghui Chen,et al.  On-line batch process monitoring using dynamic PCA and dynamic PLS models , 2002 .

[37]  R. L. Somorjai,et al.  Methods for Estimating the Intrinsic Dimsnionality of High-Dimensional Point Sets , 1986 .