О задаче Монжа - Канторовича с дополнительными линейными ограничениями@@@On the Monge - Kantorovich Problem with Additional Linear Constraints
暂无分享,去创建一个
[1] A. Lopes,et al. Duality Theorems in Ergodic Transport , 2012, 1201.5301.
[2] M. Beiglbock,et al. On a problem of optimal transport under marginal martingale constraints , 2012, 1208.1509.
[3] H. Kellerer. Duality theorems for marginal problems , 1984 .
[4] D. B. Bukin. On the Monge and Kantorovich problems for distributions of diffusion processes , 2014 .
[5] Mathias Beiglböck,et al. Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.
[6] A. Vershik,et al. Virtual continuity of measurable functions of several variables and embedding theorems , 2013 .
[7] D. Hobson. The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .
[8] Владимир Игоревич Богачев,et al. Задача Монжа - Канторовича: достижения, связи и перспективы@@@The Monge - Kantorovich problem: achievements, connections, and perspectives , 2012 .
[9] A. Moameni. Invariance properties of the Monge-Kantorovich mass transport problem , 2013, 1311.7051.
[10] A. Kolesnikov,et al. Optimal transportation of processes with infinite Kantorovich distance. Independence and symmetry , 2013, 1303.7255.
[11] Claus Griessler,et al. An optimality principle with applications in optimal transport , 2014, 1404.7054.