Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion

[1]  W. Krijgsman,et al.  Completing the Neogene geological time scale between 8.5 and 12.5 Ma , 2007 .

[2]  Heiko Pälike,et al.  The Heartbeat of the Oligocene Climate System , 2006, Science.

[3]  Frederik J. Hilgen,et al.  Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta , 2005 .

[4]  Michael Schulz,et al.  Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion , 2005, Nature.

[5]  P. Falkowski,et al.  Biological overprint of the geological carbon cycle , 2005 .

[6]  M. Pagani,et al.  A critical evaluation of the boron isotope- pH proxy: The accuracy of ancient ocean pH estimates , 2005 .

[7]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[8]  H. Pälike,et al.  Oligocene climate dynamics , 2004 .

[9]  D. Lea,et al.  Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion , 2004, Science.

[10]  A. Shevenell,et al.  Paleoceanographic Change During the Middle Miocene Climate Revolution: An Antarctic Stable Isotope Perspective , 2004 .

[11]  W. Krijgsman,et al.  Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle–Upper Miocene, northern Italy) , 2003 .

[12]  M. Raymo,et al.  The 41 kyr world: Milankovitch's other unsolved mystery , 2003 .

[13]  Gordon J. F. MacDonald,et al.  Ice Ages and Astronomical Causes: Data, Spectral Analysis and Mechanisms , 2002 .

[14]  P. Yiou,et al.  Interhemispheric space-time attributes of the Dansgaard-Oeschger oscillations between 100 and 0 ka , 2002 .

[15]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[16]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[17]  W. Krijgsman,et al.  Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco) , 2000 .

[18]  N. Shackleton,et al.  The 100,000-year ice-Age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity , 2000, Science.

[19]  M. Schulz,et al.  Amplitude variations of 1470‐year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass , 1999 .

[20]  Michael S. Y. Lee,et al.  The origin of snake feeding , 1999, Nature.

[21]  S. Clemens An astronomical tuning strategy for Pliocene sections: implications for global-scale correlation and phase relationships , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  J. Laskar The limits of Earth orbital calculations for geological time-scale use , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  J. Laskar,et al.  Astronomical calibration of Oligocene--Miocene time , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Michael A. Arthur,et al.  Miocene evolution of atmospheric carbon dioxide , 1999 .

[25]  Michael Schulz,et al.  Spectrum: spectral analysis of unevenly spaced paleoclimatic time series , 1997 .

[26]  Pascal Yiou,et al.  Macintosh Program performs time‐series analysis , 1996 .

[27]  Frederik J. Hilgen,et al.  Extending the astronomical ( polarity) time scale into the Miocene , 1995 .

[28]  N. Shackleton,et al.  Evaluating the success of astronomical tuning: Pitfalls of using coherence as a criterion for assessing pre‐Pleistocene timescales , 1995 .

[29]  B. Flower,et al.  The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling , 1994 .

[30]  B. Flower,et al.  Middle Miocene ocean-climate transition: High resolution oxygen and carbon isotopic records from Dee , 1993 .

[31]  N. Shackleton,et al.  Carbonate Dissolution Fluctuations in the Western Equatorial Pacific During the Late Quaternary , 1992 .

[32]  S. Savin,et al.  Mid‐Miocene isotope stratigraphy in the deep sea: High‐resolution correlations, paleoclimatic cycles, and sediment preservation , 1991 .

[33]  W. Prell,et al.  Pacific CaCO3 Preservation and δ18O Since 4 Ma: Paleoceanic and Paleoclimatic Implications , 1991 .

[34]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[35]  Edward A. Boyle,et al.  Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years : changes in deep ocean circulation and chemical inventories , 1985 .

[36]  J. Imbrie A theoretical framework for the Pleistocene ice ages , 1985, Journal of the Geological Society.

[37]  M. Bender,et al.  Tracers in the Sea , 1984 .

[38]  S. Ferraz-Mello Estimation of Periods from Unequally Spaced Observations , 1981 .

[39]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[40]  J. Kennett,et al.  The Cenozoic Southern Ocean : tectonics, sedimentation, and climate change between Australia and Antarctica , 2004 .

[41]  S. Nathan,et al.  MIOCENE PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY OF SITES 1143 AND 1146, ODP LEG 184, SOUTH CHINA SEA , 2003 .

[42]  A. Droxler Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question , 2003 .

[43]  A. Klaus,et al.  Proceedings of the Ocean Drilling Program, Scientific Results , 2001 .

[44]  D. Wilson,et al.  Chronology, causes and progression of the Messinian salinity crisis , 1999, Nature.

[45]  J. Zachos,et al.  Latest Oligocene through early Miocene isotopic stratigraphy and deep-water paleoceanography of the western equatorial Atlantic : Sites 926 and 929 , 1997 .

[46]  N. Shackleton,et al.  3. SEDIMENT FLUXES BASED ON AN ORBITALLY TUNED TIME SCALE 5 MA TO 14 MA, SITE 926 1 , 1997 .

[47]  N. Shackleton,et al.  SEDIMENT FLUXES BASED ON AN ORBITALLY TUNED TIME SCALE 5 MA TO 14 MA , SITE 9261 , 1997 .

[48]  Wallace S. Broecker,et al.  The Carbon cycle and atmospheric CO[2] : natural variations Archean to present , 1985 .

[49]  J. D. Hays,et al.  The orbital theory of Pleistocene climate : Support from a revised chronology of the marine δ^ O record. , 1984 .

[50]  André Berger,et al.  Milankovitch and Climate , 1984, NATO ASI Series.

[51]  W. B. Harland,et al.  A Geologic time scale , 1982 .

[52]  N. Shackleton Carbon-13 in Uvigerina: Tropical Rainforest History and the Equatorial Pacific Carbonate Dissolution Cycles , 1977 .

[53]  A. Malahoff,et al.  The fate of fossil fuel Co2 in the oceans , 1977 .

[54]  J. Avouac,et al.  The 16 April 2016, MW 7.8 (MS 7.5) Ecuador earthquake: A quasi-repeat of the 1942 MS 7.5 earthquake and partial re-rupture of the 1906 MS 8.6 Colombia–Ecuador earthquake , 2016 .