mm-Wave Phase Shifters and Switches

The ever increasing speed of transistors in mainstream silicon-based technologies made the mm-wave domain open to consumer electronic applications. Solutions that previously had to be implemented in advanced compound (III-V) technologies and were limited to high-end systems due to cost purposes, are now entering the market of low-cost consumer electronic products. Emerging mm-wave market contains various applications from extremely high data rate transceivers in Personal Digital Assistant (PDA) devices to automotive radar modules and to point to point links for replacing the fiber connectivity in sparse areas. Chapter one highlights the specific requirements of each application that makes it more compatible with a certain type of technology.To have a complete mm-wave system suitable for low cost applications, a single chip or a single package solution is preferred. To achieve this goal integrated low loss transmit / receive switching structures that are highly linear should be employed. A miniature transformer-based shunt T/R switch is introduced and implemented in a standard 90nm CMOS technology. Design equations and trade-offs for such a structure are described in this thesis. Due to a much higher free space path loss of a 60GHz signal compared to its low frequency counterparts (30dB higher loss than WiFi), and lower performances extractable from devices at these high frequencies, phased antenna array structures should be exploited to add passive antenna gains to the transceiver and help meet the link budget requirement. Fundamentals of phased antenna array structures are described and two different implementations, one through true time delay elements and the other one employing phase shifters are presented. For wideband applications and for very large arrays intended to have a wide field of view, true time delay elements should be employed to steer the array pointing beam. This work investigates true time delay elements, and an inductance tuning technique is introduced which enhances the delay tunability of a synthesized transmission line while keeping its characteristic impedance constant. In most mm-wave applications, delay cells in antenna array structures can be approximated and replaced with phase shifters. Hence different types of phase shifters are studied and an active I-Q interpolating phase shifter in the RF-path is designed and implemented at 60GHz.

[1]  Brian Ellis The Design of CMOS Radio-Frequency Integrated Circuits , 2004 .

[2]  Ali M. Niknejad,et al.  A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[3]  J. Paramesh,et al.  A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity , 2005, IEEE Journal of Solid-State Circuits.

[4]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[5]  F. Ellinger,et al.  Varactor-loaded transmission-line phase shifter at C-band using lumped elements , 2003 .

[6]  Ali M. Niknejad,et al.  mm-Wave Silicon Technology: 60 GHz and Beyond , 2008 .

[7]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[8]  Ali Hajimiri,et al.  Statistical analysis of integrated passive delay lines , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[9]  Ali M. Niknejad,et al.  Low-Power mm-Wave Components up to 104GHz in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[10]  A.H. Pawlikiewicz,et al.  RF CMOS or SiGE BiCMOS in RF and Mixed Signal Circuit Design , 2007, 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems.

[11]  Ali M. Niknejad,et al.  CMOS Low Noise Amplifier with Capacitive Feedback Matching , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[12]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[13]  Ali M. Niknejad,et al.  A 60GHz 1V + 12.3dBm Transformer-Coupled Wideband PA in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[14]  B. Wooley,et al.  A CMOS RF power amplifier with parallel amplification for efficient power control , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[15]  B. Heydari,et al.  Nanoscale CMOS for mm-Wave Applications , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[16]  C. Burrus,et al.  Array Signal Processing , 1989 .

[17]  Ali Hajimiri,et al.  A Bidirectional RF-Combining 60GHz Phased-Array Front-End , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[18]  H. Taub,et al.  Communication Circuits: Analysis and Design , 1973, IEEE Trans. Commun..

[19]  Ali M. Niknejad,et al.  A mm-wave transformer based transmit/receive switch in 90nm CMOS technology , 2009, 2009 European Microwave Conference (EuMC).

[20]  E. Skafidas,et al.  A 60-GHz CMOS Transmit/Receive Switch , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[21]  H. Iwai Future of CMOS technology , 2004, 2004 Semiconductor Manufacturing Technology Workshop Proceedings (IEEE Cat. No.04EX846).

[22]  R. Beerkens,et al.  A comparison of Si CMOS, SiGe BiCMOS, and InP HBT technologies for high-speed and millimeter-wave ICs , 2004, Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004..

[23]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[24]  Ali M. Niknejad,et al.  Integrated circuit transmission-line transformer power combiner for millimetre-wave applications , 2007 .

[25]  James S. Dunn,et al.  Status and Direction of Communication Technologies - SiGe BiCMOS and RFCMOS , 2005, Proceedings of the IEEE.

[26]  Jeng-Han Tsai,et al.  A Miniature Q-Band Low Noise Amplifier Using 0.13- m CMOS Technology , 2009 .

[27]  H. Zirath,et al.  90 nm CMOS MMIC amplifier , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[28]  David G. Long,et al.  Array signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..

[29]  Gabriel M. Rebeiz,et al.  A miniature DC-70 GHz SP4T switch in 0.13-µm CMOS , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[30]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[31]  D. K. Barton,et al.  Fundamentals of Short-Range Fm Radar , 2003 .

[32]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[33]  Gabriel M. Rebeiz,et al.  A 12-GHz SiGe phase shifter with integrated LNA , 2005, IEEE Transactions on Microwave Theory and Techniques.

[34]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[35]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[36]  J. Long,et al.  31-34GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[37]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[38]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[39]  M.Y.-W. Chia,et al.  Electronic beam-steering design for UWB phased array , 2006, IEEE Transactions on Microwave Theory and Techniques.

[40]  Ali M. Niknejad,et al.  A 90GHz-carrier 30GHz-bandwidth hybrid switching transmitter with integrated antenna , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[41]  B. Jagannathan,et al.  Record RF performance of sub-46 nm L/sub gate/ NFETs in microprocessor SOI CMOS technologies , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[42]  Ali M. Niknejad,et al.  A 60 GHz Power Amplifier in 90nm CMOS Technology , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[43]  Jeffrey M. Gilbert,et al.  A 4-Gbps Uncompressed Wireless HD A/V Transceiver Chipset , 2008, IEEE Micro.

[44]  Jeff Powell,et al.  Business prospects for commercial mm-wave MMICs , 2005 .

[45]  Charles Y. Wrigley,et al.  Fundamentals of semiconductor devices , 1965 .

[46]  T. Zwick,et al.  MM-wave transceivers using SiGe HBT technology , 2004, Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004..

[47]  Sang-Gug Lee,et al.  CMOS low-noise amplifier design optimization techniques , 2004, IEEE Transactions on Microwave Theory and Techniques.

[48]  B. L. Anderson,et al.  Fundamentals of Semiconductor Devices , 2004 .

[49]  B. Razavi,et al.  A New Transceiver Architecture for the 60-GHz Band , 2009, IEEE Journal of Solid-State Circuits.

[50]  B. Heydari,et al.  30 GHz CMOS Low Noise Amplifier , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[51]  Thomas A. DeMassa,et al.  Digital Integrated Circuits , 1985, 1985 IEEE GaAs IC Symposium Technical Digest.

[52]  Trung-Kien Nguyen,et al.  Image-rejection CMOS low-noise amplifier design optimization techniques , 2005, IEEE Transactions on Microwave Theory and Techniques.

[53]  J.R. Long,et al.  A 56–65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[54]  J. Roderick,et al.  Silicon-Based Ultra-Wideband Beam-Forming , 2006, IEEE Journal of Solid-State Circuits.

[55]  Ali M. Niknejad,et al.  X/Ku Band CMOS LNA Design Techniques , 2006, IEEE Custom Integrated Circuits Conference 2006.

[56]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .

[57]  Robert W. Brodersen,et al.  A 60GHz Phased Array in CMOS , 2006, IEEE Custom Integrated Circuits Conference 2006.

[58]  Xiang Guan,et al.  A fully integrated 24-GHz eight-element phased-array receiver in silicon , 2004, IEEE Journal of Solid-State Circuits.

[59]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[60]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[61]  Ta-Shun Chu,et al.  An Integrated Ultra-Wideband Timed Array Receiver in 0.13 $\mu{\hbox{m}}$ CMOS Using a Path-Sharing True Time Delay Architecture , 2007, IEEE Journal of Solid-State Circuits.

[62]  S.S. Wong,et al.  Integrated CMOS transmit-receive switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications , 2004, IEEE Journal of Solid-State Circuits.

[63]  Ali M. Niknejad Electromagnetics for High-Speed Analog and Digital Communication Circuits: Distributed circuits , 2007 .

[64]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[65]  K. O. Kenneth,et al.  An 800-μW 26-GHz CMOS tuned amplifier , 2006, RFIC 2006.

[66]  B. Heydari,et al.  A 60-GHz 90-nm CMOS cascode amplifier with interstage matching , 2007, 2007 European Microwave Integrated Circuit Conference.

[67]  B. Heydari,et al.  Internal Unilaterization Technique for CMOS mm-Wave Amplifiers , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[68]  Jeff Powell,et al.  The development of affordable front-end hardware for mm-wave imaging using multilayer softboard technology , 2007, SPIE Defense + Commercial Sensing.

[69]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[70]  J.R. Long,et al.  Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits , 2006, IEEE Journal of Solid-State Circuits.