A survey of finite element methods for time-harmonic acoustics

Many of the current issues and methodologies related to finite element methods for time-harmonic acoustics are reviewed. The effective treatment of unbounded domains is a major challenge. Most prominent among the approaches that have been developed for this purpose are absorbing boundary conditions, infinite elements, and absorbing layers. Standard computational methods are unable to cope with wave phenomena at short wave lengths due to resolutions required to control dispersion and pollution errors, leading to prohibitive computational demands. Since computation naturally separates the scales of a problem according to the mesh size, multiscale considerations provide a useful framework for viewing these difficulties and developing methods to counter them. Other issues addressed are related to the efficient solution of systems of specialized algebraic equations, and inverse problems of acoustics. The tremendous progress that has been made in all of the above areas in recent years will surely continue, leading to many more exciting developments.

[1]  Jin-Fa Lee,et al.  A comparison of anisotropic PML to Berenger's PML and its application to the finite-element method for EM scattering , 1997 .

[2]  O. C. Zienkiewicz,et al.  Diffraction and refraction of surface waves using finite and infinite elements , 1977 .

[3]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[4]  Leszek Demkowicz,et al.  Convergence of the infinite element methods for the Helmholtz equation in separable domains , 1998 .

[5]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[6]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[7]  Ivo Babuška,et al.  A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems , 1998 .

[8]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[9]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[10]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[11]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[12]  Weng Cho Chew,et al.  A general approach to extend Berenger's absorbing boundary condition to anisotropic and dispersive media , 1998 .

[13]  David S. Burnett,et al.  An ellipsoidal acoustic infinite element , 1998 .

[14]  Dan Givoli,et al.  Recent advances in the DtN FE Method , 1999 .

[15]  Charbel Farhat,et al.  On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method , 2002 .

[16]  K. H. Chen,et al.  Applications of the dual integral formulation in conjunction with fast multipole method in large-scale problems for 2D exterior acoustics , 2004 .

[17]  P. Pinsky,et al.  A galerkin least-squares finite element method for the two-dimensional Helmholtz equation , 1995 .

[18]  Karl Meerbergen,et al.  Application of a domain decomposition method with Lagrange multipliers to acoustic problems arising , 2000 .

[19]  C. Brebbia,et al.  Boundary Elements IX , 1987 .

[20]  Charbel Farhat,et al.  Residual-Free Bubbles for the Helmholtz Equation , 1996 .

[21]  C. Farhat,et al.  A fast method for solving acoustic scattering problems in frequency bands , 2001 .

[22]  Lars Mönch,et al.  A Newton method for solving the inverse scattering problem for a sound-hard obstacle , 1996 .

[23]  I. Harari,et al.  Numerical investigations of stabilized finite element computations for acoustics , 2004 .

[24]  Paul E. Barbone,et al.  Nearly H1-optimal finite element methods , 2001 .

[25]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[26]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[27]  David Colton,et al.  The three dimensional inverse scattering problem for acoustic waves , 1982 .

[28]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[29]  I. Harari A unified variational approach to domain-based computation of exterior problems of time-harmonic acoustics , 1998 .

[30]  Analysis of Medium-Frequency Vibrations in a Frequency Range , 2003 .

[31]  Dan Givoli,et al.  Exact Representations on Artificial Interfaces and Applications in Mechanics , 1999 .

[32]  Shan Zhao,et al.  Numerical solution of the Helmholtz equation with high wavenumbers , 2004 .

[33]  T. Hughes,et al.  Finite element methods for the Helmholtz equation in an exterior domain: model problems , 1991 .

[34]  Frank Ihlenburg,et al.  On the pollution effect in FE solutions of the 3D-Helmholtz equation , 1999 .

[35]  Calvin H. Wilcox,et al.  Scattering Theory for the d'Alembert Equation in Exterior Domains , 1975 .

[36]  Dan Givoli,et al.  A finite element method for large domains , 1989 .

[37]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[38]  Peter Monk,et al.  Recent Developments in Inverse Acoustic Scattering Theory , 2000, SIAM Rev..

[39]  D. W. Quinn Integral Equation Methods in Duct Acoustics for Nonuniform Ducts with Variable Impedance , 1977 .

[40]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[41]  Y. Erlangga,et al.  Shifted Laplace preconditioners for the Helmholtz equations , 2003 .

[42]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[43]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[44]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[45]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[46]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[47]  O. C. Zienkiewicz,et al.  Achievements and some unsolved problems of the finite element method , 2000 .

[48]  藤田 宏,et al.  Ivar Stakgold: Boundary Value Problems of Mathematical Physics, Vol 1. Macmillan Co., New York, 1967, 340+viii頁, 24×16cm, 5,180円. , 1967 .

[49]  Thomas J. R. Hughes,et al.  Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .

[50]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[51]  Thomas J. R. Hughes,et al.  h-Adaptive finite element computation of time-harmonic exterior acoustics problems in two dimensions , 1997 .

[52]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[53]  Peter M. Pinsky,et al.  A residual-based finite element method for the Helmholtz equation , 2000 .

[54]  E. Turkel Introduction to the special issue on absorbing boundary conditions , 1998 .

[55]  ELI TURKEL,et al.  A CARTESIAN PERFECTLY MATCHED LAYER FOR THE HELMHOLTZ EQUATION , 2022 .

[56]  Saikat Dey,et al.  Mid-frequency structural acoustic and vibration analysis in arbitrary, curved three-dimensional domains , 2001 .

[57]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[58]  Frank Ihlenburg,et al.  ON FUNDAMENTAL ASPECTS OF EXTERIOR APPROXIMATIONS WITH INFINITE ELEMENTS , 2000 .

[59]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[60]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[61]  O. von Estorff,et al.  Improved conditioning of infinite elements for exterior acoustics , 2003 .

[62]  Thomas J. R. Hughes,et al.  Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .

[63]  Wim Desmet,et al.  A Coupled Finite Element–Wave Based Approach for the Steady-State Dynamic Analysis of Acoustic Systems , 2001 .

[64]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[65]  R. J. Astley,et al.  Finite elements for wave propagation - Special Issue of The Journal of Computational Acoustics , 2000 .

[66]  Omar Laghrouche,et al.  Short wave modelling using special finite elements , 2000 .

[67]  Rabia Djellouli,et al.  FINITE ELEMENT SOLUTION OF TWO-DIMENSIONAL ACOUSTIC SCATTERING PROBLEMS USING ARBITRARILY SHAPED CONVEX ARTIFICIAL BOUNDARIES , 2000 .

[68]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[69]  Tuomo Rossi,et al.  A Domain Embedding Method for Scattering Problems with an Absorbing Boundary or a Perfectly Matched Layer , 2003 .

[70]  Gerhard Kristensson,et al.  Inverse problems for acoustic waves using the penalised likelihood method , 1986 .

[71]  E. Turkel,et al.  ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION , 2000 .

[72]  L. Couchman,et al.  Scattering and inverse scattering of sound-hard obstacles via shape deformation , 1997 .

[73]  Tuomo Rossi,et al.  Fast direct solution of the Helmholtz equation with a perfectly matched layer or an absorbing boundary condition , 2003 .

[74]  Mardochée Magolu monga Made,et al.  Incomplete factorization-based preconditionings for solving the Helmholtz equation , 2001 .

[75]  Marcus J. Grote,et al.  On nonreflecting boundary conditions , 1995 .

[76]  Dilip N. Ghosh Roy,et al.  Inverse Problems and Inverse Scattering of Plane Waves , 2001 .

[77]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[78]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[79]  K. Gerdes,et al.  A REVIEW OF INFINITE ELEMENT METHODS FOR EXTERIOR HELMHOLTZ PROBLEMS , 2000 .

[80]  Bruno Després,et al.  Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation , 2003 .

[81]  R. E. Kleinman,et al.  Boundary Integral Equations for the Three-Dimensional Helmholtz Equation , 1974 .

[82]  L. Franca,et al.  The Galerkin gradient least-squares method , 1989 .

[83]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[84]  David Gottlieb,et al.  A Mathematical Analysis of the PML Method , 1997 .

[85]  David S. Burnett,et al.  A three‐dimensional acoustic infinite element based on a prolate spheroidal multipole expansion , 1994 .

[86]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[87]  R. Bossut,et al.  Finite element modeling of radiating structures using dipolar damping elements , 1989 .

[88]  O. M. Ramahi,et al.  Exact implementation of higher order Bayliss-Turkel absorbing boundary operators in finite-element simulation , 1998 .

[89]  Peter M. Pinsky,et al.  Shape sensitivity calculations for exterior acoustics problems , 2001 .

[90]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[91]  Yousef Saad,et al.  Preconditioning techniques for the solution of the Helmholtz equation by the finite element method , 2003, Math. Comput. Simul..

[92]  Charles I. Goldstein,et al.  The weak element method applied to Helmholtz type equations , 1986 .

[93]  R. J. Astley,et al.  Mapped Wave Envelope Elements for Acoustical Radiation and Scattering , 1994 .

[94]  Laurence Halpern,et al.  Absorbing boundaries and layers, domain decomposition methods : applications to large scale computers , 2001 .

[95]  Isaac Harari,et al.  Reducing Dispersion of Linear Triangular Elements for the Helmholtz Equation , 2002 .

[96]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[97]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[98]  R. J. Astley,et al.  The performance of spheroidal infinite elements , 2001 .

[99]  Peter M. Pinsky,et al.  On the implementation of the Dirichlet-to-Neumann radiation condition for iterative solution of the Helmholtz equation , 1998 .

[100]  Rainer Kress,et al.  On the numerical solution of the three-dimensional inverse obstacle scattering problem , 1992 .

[101]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[102]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[103]  L. Greengard,et al.  Accelerating fast multipole methods for the Helmholtz equation at low frequencies , 1998 .

[104]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[105]  M. Malhotra EFFICIENT COMPUTATION OF MULTI-FREQUENCY FAR-FIELD SOLUTIONS OF THE HELMHOLTZ EQUATION USING PADÉ APPROXIMATION , 2000 .

[106]  Hafiz M. Atassi,et al.  A Domain Decomposition Method for the Exterior Helmholtz Problem , 1998 .

[107]  T. Hughes,et al.  A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics , 1992 .

[108]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[109]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[110]  D. Griffel,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[111]  Henry Markram,et al.  Preface to the Special Issue , 2003 .

[112]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[113]  I. Stakgold,et al.  Boundary value problems of mathematical physics , 1987 .