Closed-Form Directivity Expression for Arbitrary Volumetric Antenna Arrays

It is proposed a closed-form expression of directivity for an arbitrary volumetric antenna arrays using a general element pattern expression of type <inline-formula> <tex-math notation="LaTeX">$\sin ^{u}{(\theta)}\cos ^{v}{(\theta)}$ </tex-math></inline-formula>, with <inline-formula> <tex-math notation="LaTeX">$v > -({1}/{2})$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$u > -1$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$u$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$v \in \mathbb {Z}$ </tex-math></inline-formula>. Variations of this expression for different values of <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$u$ </tex-math></inline-formula> are analyzed from the analytical and numerical perspectives. The parameters found in the closed-form expression are related to the order <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$u$ </tex-math></inline-formula> of the element patterns, the rectangular spatial coordinate of each antenna element, the magnitude and phase excitation coefficients (complex excitation) of all elements, and the desired angle in spherical coordinates <inline-formula> <tex-math notation="LaTeX">$(\theta _{0}, \phi _{0})$ </tex-math></inline-formula>. The expression found in this communication has been validated by numerical results, considering distinct configuration scenarios.

[1]  A generalized expression of directivity for planar antenna arrays , 2013, 2013 Annual IEEE India Conference (INDICON).

[2]  S. Ghoshal,et al.  A Generalized Closed Form Expression of Directivity of Arbitrary Planar Antenna Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[3]  Arun K. Bhattacharyya,et al.  Phased Array Antennas : Floquet Analysis, Synthesis, BFNs and Active Array Systems , 2006 .

[4]  Effects of inter element spacing on large antenna array characteristics , 2017, 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA).

[5]  P. L. Werner,et al.  Closed-form representation for directivity of nonuniformly spaced linear arrays with arbitrary element patterns , 1999 .

[6]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[7]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[8]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[9]  Randy L. Haupt,et al.  Antenna Arrays: A Computational Approach , 2010 .

[10]  Hassan M. El-Sallabi,et al.  EFFECT OF ANTENNA ARRAY GEOMETRY AND ULA AZIMUTHAL ORIENTATION ON MIMO CHANNEL PROPERTIES IN URBAN CITY STREET GRID , 2006 .

[11]  A. H. Nuttall,et al.  Approximations to directivity for linear, planar, and volumetric apertures and arrays , 2001 .

[12]  Navrati Saxena,et al.  Next Generation 5G Wireless Networks: A Comprehensive Survey , 2016, IEEE Communications Surveys & Tutorials.

[13]  Wei Fan,et al.  Evaluation of massive MIMO systems using time-reversal beamforming technique , 2016, 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[14]  B. Singaraju,et al.  Theory and applications of antenna arrays , 1975, Proceedings of the IEEE.

[15]  S. Ghoshal,et al.  Generalization of Directivity Expressions for Antenna Arrays , 2017, IEEE Transactions on Antennas and Propagation.