Computational Aspects of Stochastic Collocation with Multifidelity Models
暂无分享,去创建一个
Dongbin Xiu | Xueyu Zhu | Akil Narayan | D. Xiu | A. Narayan | Xueyu Zhu
[1] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[2] Dongbin Xiu,et al. Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..
[3] Leo Wai-Tsun Ng,et al. Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .
[4] Stephen Roberts,et al. Stochastic galerkin and collocation methods for quantifying uncertainty in differential equations: a review , 2009 .
[5] Loic Le Gratiet,et al. Bayesian Analysis of Hierarchical Multifidelity Codes , 2011, SIAM/ASA J. Uncertain. Quantification.
[6] A. O'Hagan,et al. Predicting the output from a complex computer code when fast approximations are available , 2000 .
[7] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[8] Xiang Ma,et al. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..
[9] Shun Zhang,et al. On the Use of ANOVA Expansions in Reduced Basis Methods for Parametric Partial Differential Equations , 2016, J. Sci. Comput..
[10] Peter Z. G. Qian,et al. Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments , 2008, Technometrics.
[11] Nitin Agarwal,et al. A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties , 2009, J. Comput. Phys..
[12] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[13] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[14] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[15] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[16] Andrew J. Majda,et al. Absorbing Boundary Conditions for Numerical Simulation of Waves , 1977 .
[17] M. Eldred. Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .
[18] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[19] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[20] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[21] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[22] Dongbin Xiu,et al. A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..
[23] George E. Karniadakis,et al. The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..