An efficient interface capturing method for a large collection of interacting bodies immersed in a fluid

An efficient method to capture an arbitrary number of fluid/structure interfaces in a level-set framework is built, following ideas introduced for contour capturing in image analysis. Using only three label maps and two distance functions we succeed in locating and evolving the bodies independently in the whole domain and get the distance between the closest bodies in order to apply a collision force whatever the number of cells is. The method is applied to rigid solid bodies in order to compare to the results available in the literature. In that case, a global penalization model uses the label maps to follow the solid bodies all together without a separate computation of each body velocity. Numerical simulations are performed in two- and three- dimensions. An application to immersed vesicles is also proposed and shows the capability and efficiency of the method to handle numerical contacts between elastic bodies at low resolution. Two-dimensional simulations of vesicles under various flow conditions are presented.

[1]  G. Cottet,et al.  A level-set formulation of immersed boundary methods for fluid–structure interaction problems , 2004 .

[2]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[3]  A. Lefebvre Fluid-Particle simulations with FreeFem++ , 2007 .

[4]  N. Patankar A formulation for fast computations of rigid particulate flows , 2001 .

[5]  C. Conca,et al.  Added mass and damping in fluid-structure interaction , 1997 .

[6]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[7]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[8]  Jerry L. Prince,et al.  A multiple object geometric deformable model for image segmentation , 2013, Comput. Vis. Image Underst..

[9]  T. Wick Fluid-structure interactions using different mesh motion techniques , 2011 .

[10]  Georgios Tziritas,et al.  Moving object localisation using a multi-label fast marching algorithm , 2001, Signal Process. Image Commun..

[11]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[12]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[13]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[14]  G. Cottet,et al.  A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES , 2006 .

[15]  B. Maury A many-body lubrication model , 1997 .

[16]  Yvon Maday,et al.  Fluid-Structure Interaction: A Theoretical Point of View , 2000 .

[17]  Miguel A. Fernández,et al.  A projection algorithm for fluid–structure interaction problems with strong added-mass effect , 2006 .

[18]  Claire Bost Méthodes Level-Set et pénalisation pour le calcul d'interactions fluide-structure. (Level-Set method and penalization for fluid-structure interactions) , 2008 .

[19]  T. Wick,et al.  Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates , 2010 .

[20]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[21]  Frederick Stern,et al.  A highly scalable massively parallel fast marching method for the Eikonal equation , 2015, J. Comput. Phys..

[22]  Miguel A. Fernández,et al.  Incremental displacement-correction schemes for incompressible fluid-structure interaction , 2012, Numerische Mathematik.

[23]  Paul Vigneaux,et al.  Level-Set method and stability condition for curvature-driven flows , 2007 .

[24]  Emmanuel Maitre,et al.  A semi-implicit level set method for multiphase flows and fluid-structure interaction problems , 2016, J. Comput. Phys..

[25]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[26]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[27]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[28]  Bertrand Maury,et al.  A time-stepping scheme for inelastic collisions , 2006, Numerische Mathematik.

[29]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[30]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[31]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[32]  Marina Vidrascu,et al.  Generalized Robin–Neumann explicit coupling schemes for incompressible fluid‐structure interaction: Stability analysis and numerics , 2015 .

[33]  Miguel A. Fernández,et al.  Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction , 2015, J. Comput. Phys..

[34]  Miguel Angel Fernández,et al.  Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit , 2011 .

[35]  Mathieu Coquerelle,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .

[36]  Sarah L. Dance,et al.  Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow , 2003 .

[37]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[39]  B. Maury,et al.  A PENALTY METHOD FOR THE SIMULATION OF FLUID - RIGID BODY INTERACTION , 2005 .