Development of biodegradable Fe-Mn-Mg alloys by mechanical alloying and spark plasma sintering

[1]  C. Shuai,et al.  Construction of magnetic nanochains to achieve magnetic energy coupling in scaffold , 2022, Biomaterials Research.

[2]  Yufeng Zheng,et al.  A review on current research status of the surface modification of Zn-based biodegradable metals , 2021, Bioactive materials.

[3]  C. Shuai,et al.  Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold , 2020, Bioactive materials.

[4]  Zhang-Zhi Shi,et al.  Opportunities and challenges of biodegradable Zn-based alloys , 2020 .

[5]  M. Dargusch,et al.  Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends , 2020, Current Opinion in Solid State and Materials Science.

[6]  Lu-ning Wang,et al.  Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties , 2020, Bioactive materials.

[7]  Yangde Li,et al.  Study on a biodegradable antibacterial Fe-Mn-C-Cu alloy as urinary implant material. , 2019, Materials science & engineering. C, Materials for biological applications.

[8]  C. Shuai,et al.  Biodegradable metallic bone implants , 2019, Materials Chemistry Frontiers.

[9]  Diego Mantovani,et al.  Current status and outlook on the clinical translation of biodegradable metals , 2019, Materials Today.

[10]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[11]  H. Hermawan,et al.  Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. , 2018, Materials science & engineering. C, Materials for biological applications.

[12]  Seok-Jae Lee,et al.  Austenite stability and mechanical properties of nanocrystalline Fe–Mn alloy fabricated by spark plasma sintering with variable Mn content , 2018 .

[13]  E. Pellicer,et al.  Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys , 2017 .

[14]  Boeun Lee,et al.  Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. , 2016, Acta biomaterialia.

[15]  H. Kanetaka,et al.  Development of high performance MgFe alloy as potential biodegradable materials , 2016 .

[16]  S. H. Chen,et al.  Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr , 2015, Scientific Reports.

[17]  G. Frankel,et al.  Corrosion mechanism and hydrogen evolution on Mg , 2015 .

[18]  Zhigang Xu,et al.  Recent advances on the development of magnesium alloys for biodegradable implants. , 2014, Acta biomaterialia.

[19]  E. Aghion,et al.  Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology , 2014 .

[20]  J. J. Santana,et al.  Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution , 2014 .

[21]  Ke Yang,et al.  Biodegradable Materials for Bone Repairs: A Review , 2013 .

[22]  P. Uggowitzer,et al.  Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys. , 2013, Materials science & engineering. C, Materials for biological applications.

[23]  M. Niinomi,et al.  Development of new metallic alloys for biomedical applications. , 2012, Acta biomaterialia.

[24]  F. Boas,et al.  CT artifacts: Causes and reduction techniques , 2012 .

[25]  W. Ding,et al.  Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy. , 2012, Journal of the mechanical behavior of biomedical materials.

[26]  Baoping Zhang,et al.  Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions , 2011 .

[27]  J. Kubásek,et al.  Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. , 2011, Acta biomaterialia.

[28]  Diego Mantovani,et al.  Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities , 2011, International journal of molecular sciences.

[29]  Yufeng Zheng,et al.  Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. , 2011, Acta biomaterialia.

[30]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[31]  P. Uggowitzer,et al.  Design strategy for biodegradable Fe-based alloys for medical applications. , 2010, Acta biomaterialia.

[32]  Jianwei Xu,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. , 2010, Acta biomaterialia.

[33]  D. Mantovani,et al.  Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. , 2009, Journal of biomedical materials research. Part A.

[34]  M. Alini,et al.  Degradable polymeric materials for osteosynthesis: tutorial. , 2008, European cells & materials.

[35]  A. Boccaccini,et al.  Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[36]  H. Somekawa,et al.  Effect of grain refinement on fracture toughness in extruded pure magnesium , 2005 .

[37]  E. .. Mittemeijer,et al.  Reevaluation of the Fe-Mn phase diagram , 2004 .

[38]  Z. Szklarska‐Śmiałowska Mechanism of pit nucleation by electrical breakdown of the passive film , 2002 .

[39]  T. Langdon,et al.  Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation , 2001 .

[40]  Y. N. Xie,et al.  Mechanical alloying of Fe-Mn and Fe-Mn-Si , 1999 .

[41]  W. Bradley,et al.  Fracture and fracture toughness of cast irons , 1990 .

[42]  A. Rabinkin,et al.  On the f.c.c. → h.c.p. phase transformation in high manganese-iron alloys , 1979 .

[43]  S. Hwang,et al.  The improvement of cryogenic mechanical properties of Fe-12 Mn and Fe-8 Mn alloy steels through thermal/mechanical treatments , 1979 .

[44]  J. S. Benjamin,et al.  The mechanism of mechanical alloying , 1974 .

[45]  A. F. Guillermet,et al.  Fcc/Hcp martensitic transformation in the Fe-Mn system: Part II. Driving force and thermodynamics of the nucleation process , 2004 .

[46]  T. Courtney,et al.  The physics of mechanical alloying: A first report , 1990 .