Continuous Sensitivity Analysis of Fluid-Structure Interaction Problems Using Least-Squares Finite Elements

A least-squares continuous sensitivity analysis method is developed for fluid-structure interaction problems to support computationally efficient analysis and optimization of aeroelastic design problems. The continuous sensitivity system equations and sensitivity boundary conditions are derived and the problem is posed in first-order form. A leastsquares finite element solution of the coupled fluid-structure physics is then used to determine the sensitivity boundary conditions. The least-squares finite element method permits a simultaneous solution of the fluid-structure system and the mesh deformation problem within a single numerical framework. A least-squares finite element solution of the linear continuous sensitivity equations is then used to produce computationally efficient design parameter gradient calculations without needing to derive and code the problematic mesh sensitivities. An example nonlinear fluid-structure interaction problem is solved. Continuous sensitivity results for both the local and total material derivatives are presented and compared to gradients obtained by finite-difference methods.

[1]  Robert A. Canfield,et al.  Joined-Wing Aeroelastic Design with Geometric Nonlinearity , 2005 .

[2]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[3]  Stephane Etienne,et al.  Shape Sensitivity Analysis of Fluid-Structure Interaction Problems , 2006 .

[4]  Gal Berkooz,et al.  Use of Analytical Flow Sensitivities in Static Aeroelasticity , 1998 .

[5]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[6]  Eli Livne,et al.  Future of Airplane Aeroelasticity , 2003 .

[7]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[8]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[9]  Lisa G. Stanley,et al.  Design Sensitivity Analysis: Computational Issues on Sensitivity Equation Methods , 2002 .

[10]  Stephane Etienne,et al.  A monolithic formulation for unsteady Fluid-Structure Interactions , 2006 .

[11]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[12]  Thomas A. Manteuffel,et al.  First-order system least squares (FOSLS) for coupled fluid-elastic problems , 2004 .

[13]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[14]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[15]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[16]  Stephane Etienne,et al.  Sensitivity Analysis of Unsteady Fluid-Structure Interaction Problems , 2007 .

[17]  Hermann G. Matthies,et al.  A unified least-squares formulation for fluid-structure interaction problems , 2007 .

[18]  Suh-Yuh Yang,et al.  Analysis of least squares finite element methods for a parameter-dependent first-order system * , 1998 .

[19]  Hermann G. Matthies,et al.  Least-Squares FEM: Literature Review , 2005 .

[20]  J. Reddy An introduction to the finite element method , 1989 .

[21]  J. P. Pontaza,et al.  Least-squares finite element formulation for shear-deformable shells , 2005 .

[22]  J. P. Pontaza,et al.  Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics , 2005 .

[23]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[24]  J. N. Reddy,et al.  The Least-Squares Finite Element Method Applied to Fluid-Structure Interation Problems , 2007 .

[25]  Dewey H. Hodges,et al.  Introduction to Structural Dynamics and Aeroelasticity , 2002 .

[26]  J. Burns,et al.  A PDE Sensitivity Equation Method for Optimal Aerodynamic Design , 1997 .

[27]  John A. Burns,et al.  A SENSITIVITY EQUATION APPROACH TO SHAPE OPTIMIZATION IN FLUID FLOWS , 1994 .

[28]  J. Pasciak,et al.  Least-squares methods for linear elasticity based on a discrete minus one inner product , 2001 .

[29]  Erik Lund,et al.  Shape design optimization of steady fluid-structure interaction problems with large displacements , 2001 .

[30]  D. Dinkler,et al.  Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .

[31]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[32]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[33]  Jasbir Arora,et al.  Structural shape design sensitivity analysis - A unified viewpoint , 1991 .

[34]  Luciano Demasi,et al.  Exploratory Studies of Joined Wing Aeroelasticity , 2005 .

[35]  Raphael T. Haftka,et al.  Two Approaches to Sensitivity Analysis for Shape Variation of Structures , 1988 .

[36]  Kyung K. Choi,et al.  Structural sensitivity analysis and optimization , 2005 .

[37]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[38]  Shanhong Ji,et al.  Finite element analysis of fluid flows fully coupled with structural interactions , 1999 .

[39]  R. Canfield,et al.  Enriched Multipoint Cubic Approximations for Large-Scale Optimization , 2008 .

[40]  O O Bendiksen,et al.  Modern developments in computational aeroelasticity , 2004 .

[41]  M.M.J. Proot The least-squares spectral element method: Theory, implementation and application to incompressible flows , 2003 .