The Role of Knowledge Representation in Geographic Knowledge Discovery: A Case Study

With the advent of massive, heterogeneous geographic datasets, data mining and knowledge discovery in databases (KDD) have become important tools in deriving meaningful information from these data. In this paper, we discuss how knowledge representation can be employed to significantly enhance the power of the knowledge discovery process to uncover patterns and relationships. We suggest that geographic data models that support knowledge discovery must represent both observational data and derived knowledge. In addition, knowledge representation in the context of KDD must support the iterative and interactive nature of the knowledge discovery process to enable the analyst to iteratively apply, and revise the parameters of, specific analytical techniques. Our approach to knowledge representation and discovery is demonstrated through a case study that focuses on the identification and analysis of storms and other related climate phenomena embedded within a spatio-temporal data set of meteorological observations.

[1]  Donna Peuquet,et al.  A conceptual framework for incorporating cognitive principles into geographical database representation , 2000, Int. J. Geogr. Inf. Sci..

[2]  Donna Peuquet,et al.  Geobrowsing: Creative Thinking and Knowledge Discovery Using Geographic Visualization , 2002, Inf. Vis..

[3]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[4]  Jon Sticklen,et al.  Knowledge-based segmentation of Landsat images , 1991, IEEE Trans. Geosci. Remote. Sens..

[5]  Lawrence O. Hall,et al.  A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Peter Buneman,et al.  Semistructured data , 1997, PODS.

[7]  James Martin,et al.  Object-oriented analysis and design , 1992 .

[8]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[9]  Arbee L. P. Chen,et al.  Evaluating Aggregate Operations Over Imprecise Data , 1996, IEEE Trans. Knowl. Data Eng..

[10]  John F. Roddick,et al.  Higher Order Mining: Modelling And Mining TheResults Of Knowledge Discovery , 2000 .

[11]  Jeremy L. Mennis,et al.  Derivation and implementation of a semantic GIS data model informed by principles of cognition , 2003, Comput. Environ. Urban Syst..

[12]  Jiawei Han,et al.  GeoMiner: a system prototype for spatial data mining , 1997, SIGMOD '97.

[13]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[14]  Edward Yourdon,et al.  Object-oriented analysis , 2012 .

[15]  Andrew M. Carleton,et al.  Satellite Remote Sensing in Climatology , 1991 .

[16]  Milan Sonka,et al.  Knowledge-based interpretation of MR brain images , 1996, IEEE Trans. Medical Imaging.

[17]  John F. Roddick,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[18]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[19]  Norberto F. Ezquerra,et al.  Knowledge-Guided Segmentation of 3D Imagery , 1996, CVGIP Graph. Model. Image Process..

[20]  Jiawei Han,et al.  Data-Driven Discovery of Quantitative Rules in Relational Databases , 1993, IEEE Trans. Knowl. Data Eng..

[21]  Mark Gahegan,et al.  Geospatial Data Mining and Knowledge Discovery , 2000 .

[22]  J. P. Reilly Representations of Space and Time, by Donna J. Peuquet , 2002 .

[23]  John F. Roddick,et al.  A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..

[24]  Kwong-Sak Leung,et al.  A generic concept-based object-oriented geographical information system , 1999, Int. J. Geogr. Inf. Sci..

[25]  Donna J. Peuquet,et al.  Representations of space and time , 2002 .

[26]  Arie Shoshani,et al.  OLAP and statistical databases: similarities and differences , 1997, PODS '97.

[27]  D. Peuquet,et al.  Interactive Subspace Clustering for Mining High-Dimensional Spatial Patterns , 2002 .

[28]  Joseph B. Klemp,et al.  Characteristics of Isolated Convective Storms , 1986 .

[29]  Mark Gahegan,et al.  Introducing geovista studio: an integrated suite of visualization and computational methods for expl , 2002 .

[30]  John F. Roddick,et al.  Temporal, Spatial, and Spatio-Temporal Data Mining , 2001, Lecture Notes in Computer Science.

[31]  Michèle Sebag,et al.  Incremental Learning of Rules and Meta-rules , 1990, ML.

[32]  Oliver Günther,et al.  Progress in computational methods for representing geographical concepts , 1999, Int. J. Geogr. Inf. Sci..

[33]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[34]  Rahul Ramachandran,et al.  Challenges and solutions to mining Earth science data , 2000, SPIE Defense + Commercial Sensing.