(Invited) mm-wave silicon ICs: An opportunity for holistic design

Millimeter-waves integrated circuits offer a unique opportunity for a holistic design approach encompassing RF, analog, and digital, as well as radiation and electromagnetics. The ability to deal with the complete system from the digital circuitry to on-chip antennas and everything in between offers unparalleled opportunities for completely new architectures and topologies, previously impossible due the traditional partitioning of various blocks in conventional design. This opens a plethora of new architectural and system level innovation within the integrated circuit platform. This paper reviews some of the challenges and opportunities for mm-wave ICs and presents several solutions to them.

[1]  A. Babakhani,et al.  mm-wave phased arrays in silicon with integrated antennas , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[2]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[3]  B. Gaucher,et al.  SiGe bipolar transceiver circuits operating at 60 GHz , 2005, IEEE Journal of Solid-State Circuits.

[4]  Rumi Chunara,et al.  Phased array systems in silicon , 2004, IEEE Communications Magazine.

[5]  Aydin Babakhani,et al.  A Near-Field Modulation Technique Using Antenna Reflector Switching , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  D. Rutledge,et al.  INTEGRATED-CIRCUIT ANTENNAS. , 1983 .

[7]  Wilhelm H. Von Aulock,et al.  Properties of Phased Arrays , 1960, Proceedings of the IRE.

[8]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[9]  D. Parker,et al.  Microwave industry outlook - defense applications , 2002 .

[10]  Xiaofeng Li,et al.  Electrical funnel: A broadband signal combining method , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[11]  Xiang Guan,et al.  A 24-GHz CMOS front-end , 2004, IEEE Journal of Solid-State Circuits.

[12]  Brittin C. Kane,et al.  Smart Phased Array SoCs: A Novel Application for Advanced SiGe HBT BiCMOS Technology , 2005, Proceedings of the IEEE.

[13]  Kari Halonen,et al.  mm-Wave & Phased Arrays , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[14]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[15]  Ali Hajimiri,et al.  Invited Paper Special Section on Analog Circuits and Related Soc Integration Technologies Holistic Design in Mm-wave Silicon Ics , 2022 .

[16]  Ali Hajimiri,et al.  mm-Wave Silicon ICs: Challenges and Opportunities , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[17]  Brant C. White,et al.  United States patent , 1985 .

[18]  H. Hashemi,et al.  A 24-GHz SiGe phased-array receiver-LO phase-shifting approach , 2005, IEEE Transactions on Microwave Theory and Techniques.

[19]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[20]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[21]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[22]  Robert C. Hansen,et al.  Significant phased array papers , 1973 .

[23]  D. Parker,et al.  Phased arrays-part II: implementations, applications, and future trends , 2002 .