Adsorption and reaction of Rh(CO)2(acac) on Al2O3/Ni3Al(111).

The Al(2)O(3)/Ni(3)Al(111) surface has been used as a template for the nucleation and growth of rhodium clusters using an organometallic precursor: Rh(CO)(2)(acac). When Rh(CO)(2)(acac) is deposited on the Al(2)O(3)/Ni(3)Al(111) surface, the molecule is observed to bind preferentially to specific sites associated with the film superstructure (known as the dot structure) and appears to be stable at temperatures up to 473 K at which point some sintering and aggregation processes begin. Annealing the sample to 673 K results in further sintering of the metal deposits as well as an apparent loss in the coverage of rhodium species possibly due to a combination of desorption and deligation. After annealing to 873 K the coverage of rhodium species decreases by about 50% with respect to the initial deposited coverage. Our results suggest that using an organometallic precursor rather than metal atoms to form deposited metal particles on oxide substrates may result in increased resistance to sintering processes.

[1]  W. Marsden I and J , 2012 .

[2]  D. Goodman,et al.  Structure of Molecular-Sized Ru3Sn3 Clusters on a SiO2 Film on Mo(112) , 2008 .

[3]  M Schmid,et al.  Nanotemplate with holes: ultrathin alumina on Ni3Al(111). , 2007, Physical review letters.

[4]  K. Wandelt,et al.  Disorder or complexity? Understanding a nanoscale template structure on alumina. , 2007, Journal of the American Chemical Society.

[5]  V. Dhanak,et al.  Structure of adsorbed organometallic rhodium: model single atom catalysts. , 2007, Physical review letters.

[6]  B. Gates,et al.  Size-dependent catalytic activity of zeolite-supported iridium clusters , 2007 .

[7]  K. Wandelt,et al.  Surface structure of an ultrathin alumina film on Ni3Al(111): a dynamic scanning force microscopy study. , 2006, Physical review letters.

[8]  M. Kralj,et al.  Nucleation of ordered Fe islands on Al2O3/Ni3Al(111) , 2006 .

[9]  M. Kralj,et al.  Determination of the coincidence lattice of an ultra thin Al2O3 film on Ni3Al(111) , 2005 .

[10]  K. Wandelt,et al.  Thin alumina films on Ni3Al(111): a template for nanostructured Pd cluster growth. , 2004, Faraday discussions.

[11]  U. Heiz,et al.  Fundamental aspects of catalysis on supported metal clusters , 2004 .

[12]  R. Berndt,et al.  Superstructures and coincidences of a thin oxide film on a metallic substrate: A STM study , 2003 .

[13]  B. Gates,et al.  Supported molecular catalysts: metal complexes and clusters on oxides and zeolites , 2003 .

[14]  B. Gates,et al.  Role of cluster size in catalysis: spectroscopic investigation of gamma-Al2O3-supported Ir4 and Ir6 during ethene hydrogenation. , 2003, Journal of the American Chemical Society.

[15]  M. Bäumer,et al.  On the thermal stability of metal particles supported on a thin alumina film , 2003 .

[16]  A. Rosenhahn,et al.  Al2O3-films on Ni3Al(111): a template for nanostructured cluster growth , 2002 .

[17]  M. Haruta,et al.  STM observations of organometallic complexes on the TiO2(1 1 0) and Si(1 1 1) surfaces , 2002 .

[18]  A. Rosenhahn,et al.  Growth of copper and vanadium on a thin Al2O3-film on Ni3Al(111) , 2001 .

[19]  A. Rosenhahn,et al.  Preferential cluster nucleation on long-range superstructures on Al2O3/Ni3Al(111) , 2001 .

[20]  M. Newton,et al.  Single crystal and high area titania supported rhodium: the interaction of supported Rh(CO)2 with NO , 2001 .

[21]  B. Gates,et al.  Synthesis and Characterization of Site-Isolated Hexarhodium Clusters on Titania Powder , 2001 .

[22]  M. Newton,et al.  Substrate-Mediated Oxidation of Carbon Residues by TiO2{110}-Supported Model Catalysts: Metal-, Precursor-, and Treatment-Dependent Labilization of Framework Oxygen , 2000 .

[23]  M. Newton,et al.  A comparison of the chemistry of RhI(acac)(CO)2 and RhI(CO)2Cl adsorbed on TiO2[110]: development of particulate Rh and oxidative disruption by CO , 2000 .

[24]  A. Rosenhahn,et al.  Oxidation of Ni3Al(111) at 600, 800, and 1050 K investigated by scanning tunneling microscopy , 2000 .

[25]  M. Bäumer,et al.  Metal deposits on well-ordered oxide films , 1999 .

[26]  M. Tanemura,et al.  OXYGEN ADSORPTION AND OXIDE FORMATION ON NI3AL(111) , 1998 .

[27]  M. Bäumer,et al.  STM studies of rhodium deposits on an ordered alumina film-resolution and tip effects , 1998 .

[28]  M. Newton,et al.  The reaction of hydrogen with TiO2(110) supported rhodium gem-dicarbonyl , 1998 .

[29]  P. A. Brühwiler,et al.  Particle size dependent CO dissociation on alumina-supported Rh: a model study (vol 279, pg 92, 1997) , 1997 .

[30]  M. Newton,et al.  The alignment of a surface species determined by FT-RAIRS: rhodium gem-dicarbonyl on TiO2(110) , 1997 .

[31]  B. Gates,et al.  Iridium Clusters in NaX Zeolite Cages: Synthesis, Reactivity, and Characterization by Infrared and Extended x-ray Absorption Fine Structure Spectroscopies , 1995 .

[32]  B. Gates Supported Metal Clusters: Synthesis, Structure, and Catalysis , 1995 .

[33]  B. Gates,et al.  Size-dependent catalytic activity of supported metal clusters , 1994, Nature.

[34]  D. Goodman,et al.  Adsorption and reaction of [HRe(CO)5] on Ultrathin MgO(111) and Amorphous SiO2 Films Grown on a Mo(110) Surface: Characterization by Infrared Reflection-Absorption Spectroscopy and Temperature-Programmed Desorption , 1994 .

[35]  D. Goodman,et al.  Adsorption and reaction of [Re2(CO)10] on ultrathin MgO films grown on a Mo(110) surface : characterization by infrared reflection-absorption spectroscopy and temperature-programmed desorption , 1994 .

[36]  B. Hayden,et al.  The chemistry of rhodium on TiO2(110) deposited by MOCVD of [Rh(CO)2Cl]2 and MVD , 1994 .

[37]  B. Hayden,et al.  Rhodium geminal dicarbonyl on TiO2(110) , 1992 .

[38]  B. Gates,et al.  Organometallic chemistry on the basic magnesium oxide surface: formation of [HIr4(CO)11]-, [Ir6(CO)15]2-, and [Ir8(CO)22]2- , 1992 .

[39]  B. Gates,et al.  A well-defined supported metal catalyst: Ir4/MgO , 1990 .

[40]  C. Dybowski,et al.  Molecular oxide-supported rhenium carbonyl complexes: synthesis and characterization by vibrational spectroscopy , 1986 .

[41]  J. Basset,et al.  Surface-supported metal cluster carbonyls. Chemisorption, decomposition and reactivity of Rh6(C0)16 supported on silica , 1978 .

[42]  J. Robertson,et al.  Catalysis by supported group VIII metal compounds I. The interaction of n-butene with hydrogen over silica-supported ruthenium carbonyl catalysts , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.