How bacteria assemble flagella.

The bacterial flagellum is both a motor organelle and a protein export/assembly apparatus. It extends from the cytoplasm to the cell exterior. All the protein subunits of the external elements have to be exported. Export employs a type III pathway, also utilized for secretion of virulence factors. Six of the components of the export apparatus are integral membrane proteins and are believed to be located within the flagellar basal body. Three others are soluble: the ATPase that drives export, a regulator of the ATPase, and a general chaperone. Exported substrates diffuse down a narrow channel in the growing structure and assemble at the distal end, often with the help of a capping structure.

[1]  K. Kutsukake Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium , 1994, Molecular and General Genetics MGG.

[2]  R. Macnab,et al.  Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB , 2003, Molecular microbiology.

[3]  R. Macnab,et al.  Substrate Specificity Classes and the Recognition Signal for Salmonella Type III Flagellar Export , 2003, Journal of bacteriology.

[4]  H. Wolf‐Watz,et al.  Proteolytic Cleavage of the FlhB Homologue YscU of Yersinia pseudotuberculosis Is Essential for Bacterial Survival but Not for Type III Secretion , 2002, Journal of bacteriology.

[5]  R. Macnab,et al.  Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway , 2002, Molecular microbiology.

[6]  R. Macnab,et al.  Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. , 2002, Biochemistry.

[7]  K. Ramamurthi,et al.  Yersinia enterocolitica Type III Secretion: Mutational Analysis of the yopQ Secretion Signal , 2002, Journal of bacteriology.

[8]  L. Claret,et al.  Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. , 2002, Journal of molecular biology.

[9]  Lucy Shapiro,et al.  Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ann M Stock,et al.  Molecular Information Processing: Lessons from Bacterial Chemotaxis* , 2002, The Journal of Biological Chemistry.

[11]  D. Blair,et al.  Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex. , 2001, Biochemistry.

[12]  S. Kojima,et al.  Conformational change in the stator of the bacterial flagellar motor. , 2001, Biochemistry.

[13]  R. Macnab,et al.  The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. , 2001, Journal of molecular biology.

[14]  George N. Bennett,et al.  Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum , 2001, Journal of bacteriology.

[15]  J. Thomas,et al.  Flagellin polymerisation control by a cytosolic export chaperone. , 2001, Journal of molecular biology.

[16]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[17]  R. Macnab,et al.  Intergenic Suppression between the Flagellar MS Ring Protein FliF of Salmonella and FlhA, a Membrane Component of Its Export Apparatus , 2001, Journal of bacteriology.

[18]  S. Aizawa,et al.  Length of the Flagellar Hook and the Capacity of the Type III Export Apparatus , 2001, Science.

[19]  G. Fraser,et al.  Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT , 2001, Molecular microbiology.

[20]  D G Morgan,et al.  The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. , 2000, Science.

[21]  A. Bren,et al.  How Signals Are Heard during Bacterial Chemotaxis: Protein-Protein Interactions in Sensory Signal Propagation , 2000, Journal of bacteriology.

[22]  K. Hughes,et al.  Completion of the hook–basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription , 2000, Molecular microbiology.

[23]  R. Macnab,et al.  FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity , 2000, Molecular microbiology.

[24]  R. Macnab,et al.  Domain Structure of Salmonella FlhB, a Flagellar Export Component Responsible for Substrate Specificity Switching , 2000, Journal of bacteriology.

[25]  K. Hughes,et al.  Translation/Secretion Coupling by Type III Secretion Systems , 2000, Cell.

[26]  R. Macnab,et al.  Role of FliJ in Flagellar Protein Export inSalmonella , 2000, Journal of bacteriology.

[27]  R. Macnab,et al.  Interaction between FliE and FlgB, a Proximal Rod Component of the Flagellar Basal Body ofSalmonella , 2000, Journal of bacteriology.

[28]  William S. Ryu,et al.  Real-Time Imaging of Fluorescent Flagellar Filaments , 2000, Journal of bacteriology.

[29]  C. Hughes,et al.  From flagellum assembly to virulence: the extended family of type III export chaperones. , 2000, Trends in microbiology.

[30]  O. Schneewind,et al.  Type III machines of Gram-negative bacteria: delivering the goods. , 2000, Trends in microbiology.

[31]  T. Nambu,et al.  The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation. , 2000, Microbiology.

[32]  R. Macnab,et al.  Interactions among components of the Salmonella flagellar export apparatus and its substrates , 2000, Molecular microbiology.

[33]  M. Homma,et al.  Functional Reconstitution of the Na+-driven Polar Flagellar Motor Component of Vibrio alginolyticus* , 2000, The Journal of Biological Chemistry.

[34]  R. Macnab,et al.  FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly , 1999, Molecular microbiology.

[35]  R. Macnab,et al.  Effect of Hook Subunit Concentration on Assembly and Control of Length of the Flagellar Hook ofSalmonella , 1999, Journal of bacteriology.

[36]  D. Blair,et al.  Function of Proline Residues of MotA in Torque Generation by the Flagellar Motor of Escherichia coli , 1999, Journal of bacteriology.

[37]  G. Fraser,et al.  Substrate‐specific binding of hook‐associated proteins by FlgN and FliT, putative chaperones for flagellum assembly , 1999, Molecular microbiology.

[38]  R. Macnab,et al.  Peptidoglycan-Hydrolyzing Activity of the FlgJ Protein, Essential for Flagellar Rod Formation inSalmonella typhimurium , 1999, Journal of bacteriology.

[39]  R. Macnab,et al.  Components of the Salmonella Flagellar Export Apparatus and Classification of Export Substrates , 1999, Journal of bacteriology.

[40]  K. Namba,et al.  A structural feature in the central channel of the bacterial flagellar FliF ring complex is implicated in type III protein export. , 1998, Journal of structural biology.

[41]  K. Hughes,et al.  The type III secretion determinants of the flagellar anti‐transcription factor, FlgM, extend from the amino‐terminus into the anti‐σ28 domain , 1998, Molecular microbiology.

[42]  T. Kubori,et al.  Bacterial flagellation and cell division , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[43]  D. Blair,et al.  Function of Protonatable Residues in the Flagellar Motor of Escherichia coli: a Critical Role for Asp 32 of MotB , 1998, Journal of bacteriology.

[44]  A. Bren,et al.  The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. , 1998, Journal of molecular biology.

[45]  J. Galán,et al.  Supramolecular structure of the Salmonella typhimurium type III protein secretion system. , 1998, Science.

[46]  K. Namba,et al.  Assembly characteristics of flagellar cap protein HAP2 of Salmonella: decamer and pentamer in the pH-sensitive equilibrium. , 1998, Journal of molecular biology.

[47]  R. Macnab,et al.  The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body , 1997, Molecular microbiology.

[48]  O. Schneewind,et al.  A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. , 1997, Science.

[49]  R. Macnab,et al.  The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: putative components for flagellar assembly , 1997, Journal of bacteriology.

[50]  P. Matsumura,et al.  Cell cycle regulation of flagellar genes , 1997, Journal of bacteriology.

[51]  S. Aizawa,et al.  Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins , 1997, Journal of bacteriology.

[52]  R. Macnab,et al.  Enzymatic Characterization of FliI , 1996, The Journal of Biological Chemistry.

[53]  G. Garcı́a-Cardeña,et al.  Endothelial Nitric Oxide Synthase Is Regulated by Tyrosine Phosphorylation and Interacts with Caveolin-1* , 1996, The Journal of Biological Chemistry.

[54]  T. Reese,et al.  FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. , 1996, Journal of molecular biology.

[55]  R. Macnab,et al.  Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium , 1996, Journal of bacteriology.

[56]  N. Baba,et al.  Geometry of the flagellar motor in the cytoplasmic membrane of Salmonella typhimurium as determined by stereo-photogrammetry of quick-freeze deep-etch replica images. , 1996, Journal of molecular biology.

[57]  C. Amsler,et al.  FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies , 1996, Journal of bacteriology.

[58]  D. Blair,et al.  Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN , 1996, Journal of bacteriology.

[59]  R. Macnab,et al.  Flagella and motility , 1996 .

[60]  K. Ohnishi,et al.  Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. , 1995, Microbiology.

[61]  D. DeRosier,et al.  Structure of Bacterial Flagellar Filaments at 11 Å Resolution: Packing of the α-Helices , 1995 .

[62]  K Namba,et al.  The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy. , 1995, Journal of molecular biology.

[63]  A. Newton,et al.  Information essential for cell‐cycle‐dependent secretion of the 591‐residue Caulobacter hook protein is confined to a 21‐amino‐acid sequence near the N‐terminus , 1994, Molecular microbiology.

[64]  K. Oosawa,et al.  Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium , 1994, Journal of bacteriology.

[65]  R. Macnab,et al.  FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium , 1994, Journal of bacteriology.

[66]  D J DeRosier,et al.  Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. , 1994, Journal of molecular biology.

[67]  K. Hughes,et al.  Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. , 1993, Science.

[68]  R. Macnab,et al.  Domain organization of the subunit of the Salmonella typhimurium flagellar hook. , 1993, Journal of molecular biology.

[69]  K. Namba,et al.  Morphological pathway of flagellar assembly in Salmonella typhimurium. , 1992, Journal of molecular biology.

[70]  R. Macnab,et al.  Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex , 1992, Journal of bacteriology.

[72]  R M Macnab,et al.  Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium , 1992, Journal of Bacteriology.

[73]  R M Macnab,et al.  Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits , 1991, Journal of bacteriology.

[74]  R. Macnab,et al.  Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. , 1990, Journal of Molecular Biology.

[75]  R. Macnab,et al.  Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants , 1990, Journal of bacteriology.

[76]  R. Macnab,et al.  FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. , 1990, Journal of molecular biology.

[77]  Y. Imae,et al.  Na+-driven bacterial flagellar motors , 1989, Journal of bioenergetics and biomembranes.

[78]  S. Asakura,et al.  Total reconstitution of Salmonella flagellar filaments from hook and purified flagellin and hook-associated proteins in vitro. , 1989, Journal of molecular biology.

[79]  R. Macnab,et al.  Export of an N-terminal fragment of Escherichia coli flagellin by a flagellum-specific pathway. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[80]  S. Kudo,et al.  Release of flagellar filament-hook-rod complex by a Salmonella typhimurium mutant defective in the M ring of the basal body , 1989, Journal of bacteriology.

[81]  H. Berg,et al.  Restoration of torque in defective flagellar motors. , 1988, Science.

[82]  J. S. Parkinson,et al.  New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium. , 1988, Microbiological reviews.

[83]  R. Macnab,et al.  The flaFIX gene product of Salmonella typhimurium is a flagellar basal body component with a signal peptide for export , 1987, Journal of bacteriology.

[84]  M. Homma,et al.  Formation of flagella lacking outer rings by flaM, flaU, and flaY mutants of Escherichia coli , 1987, Journal of bacteriology.

[85]  M. Homma,et al.  Localization and stoichiometry of hook-associated proteins within Salmonella typhimurium flagella , 1987, Journal of bacteriology.

[86]  R. Macnab,et al.  Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching , 1986, Journal of bacteriology.

[87]  M. Homma,et al.  Excretion of unassembled hook-associated proteins by Salmonella typhimurium , 1985, Journal of bacteriology.

[88]  S. Asakura,et al.  "Cap" on the tip of Salmonella flagella. , 1985, Journal of molecular biology.

[89]  M. Homma,et al.  Structural genes for flagellar hook-associated proteins in Salmonella typhimurium , 1985, Journal of bacteriology.

[90]  A. Pugsley,et al.  Export and secretion of proteins by bacteria , 1985 .

[91]  C. Calladine Construction of bacterial flagellar filaments, and aspects of their conversion to different helical forms. , 1982, Symposia of the Society for Experimental Biology.

[92]  J. Shioi,et al.  Motility in Bacillus subtilis driven by an artificial protonmotive force , 1977, FEBS letters.

[93]  H. Berg,et al.  A protonmotive force drives bacterial flagella. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[94]  R M Macnab,et al.  Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. , 1977, Journal of molecular biology.

[95]  R. Macnab Bacterial flagella rotating in bundles: a study in helical geometry. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Simon,et al.  Flagellar rotation and the mechanism of bacterial motility , 1974, Nature.

[97]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[98]  R. Macnab,et al.  The gradient-sensing mechanism in bacterial chemotaxis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.