Effect of particle shape distribution on the surface plasmon resonance of Ag–SiO2 nanocomposite thin films

Silver?silica nanocomposite thin films were prepared by high pressure d.c.?sputtering technique. Films deposited at lower substrate temperature showed a narrow distribution of nanoparticles with nearly spherical shape. Increase in substrate temperature resulted in films with a non-uniform size and shape due to the agglomeration of the nanoparticles. This size and shape distribution has a profound effect on the optical absorbance spectra and results in a broad and asymmetric surface plasmon band. A?shape distribution introduced in the Maxwell?Garnett or Bruggeman effective medium theory was found to give a reasonable description of the experimentally observed optical absorption spectra.

[1]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[2]  Richard K. Chang,et al.  Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids , 1983 .

[3]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[4]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[5]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[6]  D. Ramaker,et al.  A new model describing the metal-support interaction in noble metal catalysts , 1999 .

[7]  Guihua Li,et al.  Effects of surface resonance state on the plasmon resonance absorption of Ag nanoparticles embedded in partially oxidized amorphous Si matrix , 2000 .

[8]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[9]  O. Hunderi,et al.  Optical properties of ultrafine gold particles , 1977 .

[10]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[11]  Ligang Gao,et al.  Effective dielectric constant of a two-component material with shape distribution , 2002 .

[12]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[13]  H. Takahashi,et al.  Optical absorption of submonolayer silver films: Size dependence of ϵbound in small island particles , 1983 .

[14]  Charles R. Martin,et al.  Template Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape , 1994 .

[15]  S. Chaudhuri,et al.  Nanocrystalline CdTe films deposited by high-pressure sputtering: carrier transport at low temperature , 1999 .

[16]  C. R. Martin,et al.  Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory , 1992 .

[17]  D. A. G. Bruggeman Berechnung Verschiederner Physikalischer Konstante von Heterogenen Substanzan , 1935 .

[18]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[19]  T. M. Putvinski,et al.  Polar Orientation of Dyes in Robust Multilayers by Zirconium Phosphate-Phosphonate Interlayers , 1991, Science.

[20]  B. Hsieh,et al.  Aggregation Quenching of Luminescence in Electroluminescent Conjugated Polymers , 1999 .

[21]  N. Kishimoto,et al.  Linear and nonlinear optical properties of Cu nanoparticles fabricated by high-current Cu− implantation in silica glass , 1999 .

[22]  C. Flytzanis,et al.  Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass , 1999 .