Covers in finitely accessible categories

We show that in a finitely accessible additive category every class of objects closed under direct limits and pure epimorphic images is covering. In particular, the classes of flat objects in a locally finitely presented additive category and of absolutely pure objects in a locally coherent category are covering.

[1]  M. Prest Definable Additive Categories: Purity and Model Theory , 2011 .

[2]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[3]  M. Prest Purity, Spectra and Localisation , 2009 .

[4]  S. Bazzoni When are definable classes tilting and cotilting classes , 2008 .

[5]  Katherine Pinzón Absolutely Pure Covers , 2008 .

[6]  Peter Jørgensen,et al.  Covers, precovers, and purity , 2008 .

[7]  S. Crivei A NOTE ON FLAT COVERS OF COMODULES , 2008 .

[8]  D. Simson,et al.  Flat Comodules and Perfect Coalgebras , 2007 .

[9]  Peter Jørgensen,et al.  Covers, preenvelopes, and purity , 2006, math/0611603.

[10]  R. Bashir Covers and Directed Colimits , 2006 .

[11]  James Gillespie The flat model structure on complexes of sheaves , 2006 .

[12]  J. García,et al.  Gruson-Jensen Duality for Idempotent Rings , 2005 .

[13]  J. García,et al.  Locally finitely presented categories and functor rings , 2005 .

[14]  E. Enochs,et al.  Flat Covers in the Category of Quasi-coherent Sheaves Over the Projective Line , 2004 .

[15]  Mike Prest,et al.  Some model theory of sheaves of modules , 2004, Journal of Symbolic Logic.

[16]  E. Enochs,et al.  Flat and Cotorsion Quasi-Coherent Sheaves. Applications , 2004 .

[17]  James Gillespie The flat model structure on () , 2004 .

[18]  James Gillespie THE FLAT MODEL STRUCTURE ON Ch(R) , 2004 .

[19]  I. Herzog PURE-INJECTIVE ENVELOPES , 2003 .

[20]  Mark Hovey Cotorsion pairs, model category structures, and representation theory , 2002 .

[21]  E. Enochs,et al.  Flat covers and cotorsion envelopes of sheaves , 2001 .

[22]  E. Enochs,et al.  Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications , 2001 .

[23]  E. Enochs,et al.  All Modules Have Flat Covers , 2001 .

[24]  N. Dung,et al.  Additive Categories of Locally Finite Representation Type , 2001 .

[25]  P. Eklof,et al.  How To Make Ext Vanish , 2001 .

[26]  H. Krause Exactly Definable Categories , 1998 .

[27]  J. Rada,et al.  Rings characterized by (pre)envelopes and (pre)covers of their modules , 1998 .

[28]  D. Simson,et al.  ON RINGS WHOSE FLAT MODULES FORM A GROTHENDIECK CATEGORY , 1997 .

[29]  B. Torrecillas,et al.  Preserving and reflecting covers by functors. Applications to graded modules , 1996 .

[30]  Jinzhong Xu Flat covers of modules , 1996 .

[31]  W. Crawley-Boevey Locally finitely presented additive categories , 1994 .

[32]  Robert Wisbauer,et al.  Foundations of module and ring theory , 1991 .

[33]  D. Cottom Purity , 1989, Critical Inquiry.

[34]  M. Bergh,et al.  Separable functors applied to graded rings , 1989 .

[35]  E. Enochs Injective and flat covers, envelopes and resolvents , 1981 .

[36]  M. Auslander,et al.  Preprojective modules over artin algebras , 1980 .

[37]  B. Stenström Purity in functor categories , 1968 .