Gold Nanowires: A Time-Dependent Density Functional Assessment of Plasmonic Behavior

The surface plasmon resonance has been theoretically investigated in gold nanowires by means of time-dependent density functional theory. Linear chains of Au atoms and nanowires with the structure of the fcc bulk gold grown along the ⟨110⟩ and ⟨111⟩ directions have been considered. The effects of changing the length and the section on the plasmon have been studied. Strong photoabsorption is found when the length is above 2 nm: in that case the absorption profile is characterized by a sharp peak, and its analysis reveals that many configurations contribute to the transition, confirming its collective nature as an s ← s intraband transition. As expected, the effect of increasing the length is reflected in a red shift of the plasmon.

[1]  H. Häkkinen,et al.  Effects of Silver Doping on the Geometric and Electronic Structure and Optical Absorption Spectra of the Au25–nAgn(SH)18– (n = 1, 2, 4, 6, 8, 10, 12) Bimetallic Nanoclusters , 2012 .

[2]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[3]  J. G. Snijders,et al.  Implementation of time-dependent density functional response equations , 1999 .

[4]  M. Stener,et al.  Optical excitations of gold nanoparticles: a quantum chemical scalar relativistic Time Dependent Density Functional study , 2007 .

[5]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  Christoph R. Jacob,et al.  Plasmons in Molecules , 2013 .

[7]  C. Mottet,et al.  Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure , 2011 .

[8]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[9]  Roy L. Johnston,et al.  Predicting the Optical Properties of Core-Shell and Janus Segregated Au-M Nanoparticles (M = Ag, Pd) , 2012 .

[10]  R. Whetten,et al.  All-aromatic, nanometer-scale, gold-cluster thiolate complexes. , 2005, Journal of the American Chemical Society.

[11]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[12]  M. Broyer,et al.  Optical properties of gold clusters in the size range 2-4 nm , 1998 .

[13]  Catherine J Murphy,et al.  Seeded high yield synthesis of short Au nanorods in aqueous solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[14]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[15]  M. Broyer,et al.  Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory , 2006 .

[16]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[17]  D. Ding,et al.  Density-functional studies of plasmons in small metal clusters. , 2009, The Journal of chemical physics.

[18]  L. Liz‐Marzán,et al.  Synthesis of flexible, ultrathin gold nanowires in organic media. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[19]  Á. Rubio,et al.  Time-dependent density-functional theory. , 2009, Physical chemistry chemical physics : PCCP.

[20]  Evert Jan Baerends,et al.  Density-functional-theory response-property calculations with accurate exchange-correlation potentials , 1998 .

[21]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[22]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[23]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[24]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[25]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[26]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[27]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[28]  M. Pettersson,et al.  Experimental and Theoretical Determination of the Optical Gap of the Au144(SC2H4Ph)60 Cluster and the (Au/Ag)144(SC2H4Ph)60 Nanoalloys. , 2012, The journal of physical chemistry letters.

[29]  N. Ravishankar,et al.  Ultrafine Single‐Crystalline Gold Nanowire Arrays by Oriented Attachment , 2007 .

[30]  M. Broyer,et al.  Alloying Effects on the Optical Properties of Ag–Au Nanoclusters from TDDFT Calculations , 2011 .

[31]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[32]  M. Broyer,et al.  Optical Properties of Au Nanoclusters from TD-DFT Calculations , 2011 .

[33]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[34]  Zhikun Wu,et al.  Quantum sized gold nanoclusters with atomic precision. , 2012, Accounts of chemical research.

[35]  P. Nordlander,et al.  Effects of dielectric screening on the optical properties of metallic nanoshells , 2003 .

[36]  Christine M Aikens,et al.  Electronic structure and TDDFT optical absorption spectra of silver nanorods. , 2009, The journal of physical chemistry. A.

[37]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[38]  C. Aikens,et al.  Theoretical analysis of the optical excitation spectra of silver and gold nanowires. , 2012, Nanoscale.

[39]  K. Nobusada,et al.  Raman enhancement by plasmonic excitation of structurally-characterized metal clusters: Au8, Ag8, and Cu8. , 2013, Physical chemistry chemical physics : PCCP.

[40]  K. Al‐Shamery,et al.  Formation of alkanethiolate-protected gold clusters with unprecedented core sizes in the thiolation of polymer-stabilized gold clusters , 2007 .

[41]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[42]  Hannu Häkkinen,et al.  Time-dependent density-functional theory in the projector augmented-wave method. , 2008, The Journal of chemical physics.

[43]  C. Mottet,et al.  Effect of Alloying on the Optical Properties of Ag–Au Nanoparticles , 2013 .

[44]  J. Watts,et al.  Structure, bonding, and linear optical properties of a series of silver and gold nanorod clusters: DFT/TDDFT studies. , 2010, The journal of physical chemistry. A.