On the monotonicity of games generated by symmetric submodular functions

Submodular functions have appeared to be a key tool for proving the monotonicity of several graph searching games. In this paper, we provide a general game theoretic framework able to unify old and new monotonicity results in a unique min-max theorem. Our theorem provides a game theoretic analogue to a wide number of graph theoretic parameters such as linear-width and cutwidth.

[1]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[2]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[3]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[4]  Shuichi Ueno,et al.  Mixed Searching and Proper-Path-Width , 1995, Theor. Comput. Sci..

[5]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[6]  Dimitrios M. Thilikos,et al.  Fugitive-Search Games on Graphs and Related Parameters , 1994, Theor. Comput. Sci..

[7]  L. H. Harper,et al.  The congestion of n-cube layout on a rectangular grid , 2000, Discret. Math..

[8]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[9]  Petr A. Golovach,et al.  Graph Searching and Interval Completion , 2000, SIAM J. Discret. Math..

[10]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[11]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[12]  Fillia Makedon,et al.  On minimizing width in linear layouts , 1989, Discret. Appl. Math..

[13]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[14]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[15]  Dimitrios M. Thilikos,et al.  Algorithms and obstructions for linear-width and related search parameters , 2000, Discret. Appl. Math..

[16]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[17]  Christos H. Papadimitriou,et al.  Interval graphs and seatching , 1985, Discret. Math..

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Paul D. Seymour,et al.  Monotonicity in Graph Searching , 1991, J. Algorithms.

[20]  Robin Thomas Tree decompositions of graphs , 1996 .

[21]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[22]  Richard Krueger Graph searching , 2005 .

[23]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[24]  Rolf H. Möhring,et al.  Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .

[25]  Atsushi Takahashi,et al.  Minimal Forbidden Minors for the Family of Graphs with Proper-Path-Width at Most Two , 1995 .

[26]  Dimitrios M. Thilikos,et al.  The Linkage of a Graph , 1996, SIAM J. Comput..

[27]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..