On network models and the symbolic solution of network equations

This paper gives an overview of the formulation and solution of network equations, with emphasis on the historical development in this area of work. Networks are mathematical models. The three ingredients of network descriptions are discussed. It is shown how the network equations of one-dimensional multi-port networks can be formulated and solved symbolically. If necessary, the network graph is modified such as to obtain an admittance representation for all kinds of multi-ports. N -dimensional networks are defined as graphs with the algebraic structure of N -dimensional vectors. In civil engineering, framed structures in two and three spatial dimensions may be modelled as 3-dimensional or 6dimensional networks. The separation of geometry from topology is a characteristic feature of such networks. Finally, extensions of the network concept are discussed which arise when the network graph is replaced by a 3-dimensional complex in the sense of algebraic topology.

[1]  P. Lin Symbolic network analysis , 1991 .

[2]  Kurt Johannes Reinschke,et al.  Multivariable Control a Graph-theoretic Approach , 1988 .

[3]  G. C.,et al.  Electricity and Magnetism , 1888, Nature.

[4]  Stud. Kirchhoff Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige , 2022 .

[5]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[6]  Richard James Duffin,et al.  An analysis of the Wang algebra of networks , 1959 .

[7]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[8]  Sundaram Seshu,et al.  Linear Graphs and Electrical Networks , 1961 .

[9]  C. Coates,et al.  Flow-Graph Solutions of Linear Algebraic Equations , 1959 .

[10]  M. Poincaré Cinquième complément à l’Analysis situs , 1904 .

[11]  T. Tao SHORT-CUT METHODS FOR EXPANDING THE DETERMINANTS INVOLVED IN NETWORK PROBLEMS , 1939 .

[12]  Walter Hähnle,et al.  Die Darstellung elektromechanischer Gebilde durch rein elektrische Schaltbilder , 1932 .

[13]  R. J. Wilson Analysis situs , 1985 .

[14]  J. M. Undrill,et al.  Diakoptics and networks , 1971 .

[15]  M.L. Liou,et al.  Computer-aided analysis of electronic circuits: Algorithms and computational techniques , 1977, Proceedings of the IEEE.

[16]  Georges Gielen,et al.  Symbolic analysis for automated design of analog integrated circuits , 1991, The Kluwer international series in engineering and computer science.

[17]  Michael Guenther,et al.  CAD based electric circuit modeling in industry. Part I: Mathematical structure and index of network equations. Part II: Impact of circuit configurations and parameters , 1999 .

[18]  W. Mayeda,et al.  Generation of Trees without Duplications , 1965 .

[19]  Samuel J. Mason,et al.  Feedback Theory-Some Properties of Signal Flow Graphs , 1953, Proceedings of the IRE.

[20]  J. Argyris Die Matrizentheorie der Statik , 1957 .

[21]  J. Maxwell,et al.  I.—On Reciprocal Figures, Frames, and Diagrams of Forces , 1870, Transactions of the Royal Society of Edinburgh.

[22]  Gabriel Kron,et al.  Tensor analysis of networks , 1967 .

[23]  F. A. Firestone A NEW ANALOGY BETWEEN MECHANICAL AND ELECTRICAL SYSTEMS , 1932 .

[24]  C. Chiou ON THE MATRIX ANALYSIS OF NETWORKS , 1965 .

[25]  J. L. Synge,et al.  The fundamental theorem of electrical networks , 1951 .

[26]  C. Jacobi De formatione et proprietatibus Determinatium. , 1841 .

[27]  J. Roth An application of algebraic topology: Kron’s method of tearing , 1959 .

[28]  R. Duffin,et al.  On the algebra of networks , 1953 .

[29]  Wai-Kai Chen,et al.  Topological network analysis by algebraic methods , 1967 .

[30]  S. Bellert Topological analysis and synthesis of linear systems , 1962 .

[31]  Horace M. Trent,et al.  Isomorphisms between Oriented Linear Graphs and Lumped Physical Systems , 1955 .

[32]  Gabriel Kron,et al.  A Set of Principles to Interconnect the Solutions of Physical Systems , 1953 .

[33]  Gabriel Kron,et al.  Diakoptics : the piecewise solution of large-scale systems , 1963 .

[34]  M. M. Hassoun,et al.  A hierarchical network approach to symbolic analysis of large-scale networks , 1995 .

[35]  D. Koenig Theorie Der Endlichen Und Unendlichen Graphen , 1965 .