Wall Shear Rate method validation through multi-physics simulations

Wall Shear Stress (WSS), i.e. the tangential force that blood applies to the inner layer of the vessel wall, is associated with arterial remodeling and important cardiovascular diseases like the formation of atherosclerotic plaques. In simple, uniaxial flows, WSS can be derived as the blood viscosity multiplied by the Wall Shear Rate (WSR), i.e. the velocity gradient evaluated in the radial direction. The WSR is typically estimated by measuring the velocity of the blood in the vessel center and by assuming a parabolic velocity profile (Poiseuille model). Unfortunately, this model produces inaccurate results since it does not account for the complex flow configuration present in the vessel. In a different approach, the actual flow profile is measured instantaneously through a multigate technique, but the clutter corrupts the profile in proximity to the wall, i.e. where the WSR should be evaluated, so that the profile should be reconstructed. In this work, realistic multi-physics simulations of a patient-specific carotid bifurcation are used to assess the accuracy of a 2-step method for profile reconstruction and WSR measurement. The estimated WSR matches the model ground-truth with an accuracy of about 10%.

[1]  David W. Holdsworth,et al.  In Vitro Shear Stress Measurements Using Particle Image Velocimetry in a Family of Carotid Artery Models: Effect of Stenosis Severity, Plaque Eccentricity, and Ulceration , 2014, PloS one.

[2]  J. Jensen,et al.  Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  Piero Tortoli,et al.  Accuracy and reproducibility of a novel dynamic volume flow measurement method. , 2013, Ultrasound in medicine & biology.

[4]  H. Torp,et al.  Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  K. Boone,et al.  Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study , 1996, Medical and Biological Engineering and Computing.

[6]  Piero Tortoli,et al.  Real-time vector velocity assessment through multigate doppler and plane waves , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[7]  Lucia Francesca Lucca,et al.  Wall shear stress is lower in the carotid artery responsible for a unilateral ischemic stroke. , 2006, Atherosclerosis.

[8]  Piero Tortoli,et al.  Interaction between secondary velocities, flow pulsation and vessel morphology in the common carotid artery. , 2003, Ultrasound in medicine & biology.

[9]  C. Zarins,et al.  Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress , 1983, Circulation research.

[10]  J. Arendt Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging: Field: A Program for Simulating Ultrasound Systems , 1996 .

[11]  P. Tortoli,et al.  Improved Wall Shear Rate method for robust measurements , 2014, 2014 IEEE International Ultrasonics Symposium.

[12]  A. Dallai,et al.  A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  Joris Degroote,et al.  Accuracy of Carotid Strain Estimates From Ultrasonic Wall Tracking: A Study Based on Multiphysics Simulations and In Vivo Data , 2012, IEEE Transactions on Medical Imaging.

[14]  Piero Tortoli,et al.  An integrated system for the evaluation of flow Mediated Dilation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Marcello Demi,et al.  A System for Real-Time Measurement of the Brachial Artery Diameter in B-Mode Ultrasound Images , 2007, IEEE Transactions on Medical Imaging.

[16]  P. Tortoli,et al.  Noninvasive simultaneous assessment of wall shear rate and wall distension in carotid arteries. , 2006, Ultrasound in medicine & biology.