Development and Performance of CaO/La2O3 Sorbents during Calcium Looping Cycles for CO2 Capture

The calcium looping cycles method has been identified as an attractive method for CO2 capture during coal combustion and gasification processes. However, it is well-known that the capture capacity of CaO undergoes a rapid decrease after mutiple cycles. In order to improve the stability of CO2 capture capacity in CaO, this paper focuses on the development and performance of the synthetic CaO/La2O3 sorbents for calcium looping cycles.The sorbents were synthesized by three different methods: dry physical mixing, wet chemistry, and sol−gel combustion synthesis (SGCS). Their multicyclic CO2 capture capacity and the effect of the additive La2O3 were investigated in a fixed bed reactor system. The results indicate that the additive of La2O3 plays a positive role in the carbonation/calcination reactions, and the SGCS-made synthetic sorbent is composed of ultrafine well-dispersed hollow structured particles which are beneficial to the gas-phase diffusion on the surface area and can prevent small CaO particles from...