Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator

Quantum random numbers generators (QRNGs) rely on quantum systems to produce sequences of random numbers with an overall lower level of predictability than classical algorithmic systems. Over the past two decades, phase randomizations of coherent sources from quantum spontaneous emission effects have gained a lot of interest due to their operational simplicity, cost-contained components, and ability to generate random numbers at high rates. However, many QRNGs require optimal calibration and alignment to ensure efficient and effective random-number generation. This work demonstrates a detailed analysis of a heterodyne measurement based QRNG, which implements phase randomization from two independent laser sources. The analysis also quantifies the effects of setup misalignments using the Kullback-Leibler divergence as a benchmark to assess the limiting conditions of secure random-number generation.

[1]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[2]  D. Newman,et al.  Physics of Semiconductor Laser Devices , 1980 .

[3]  Paolo Villoresi,et al.  Source-Device-Independent Ultrafast Quantum Random Number Generation. , 2015, Physical review letters.

[4]  Vijay V. Vazirani,et al.  Efficient and Secure Pseudo-Random Number Generation , 1984, CRYPTO.

[5]  V. Vedral,et al.  Information, relative entropy of entanglement, and irreversibility. , 2000 .

[6]  Hong Guo,et al.  Bias-free true random-number generator. , 2009, Optics letters.

[7]  James F. Dynes,et al.  Efficient and robust quantum random number generation by photon number detection , 2015 .

[8]  Claude Delpha,et al.  An optimal fault detection threshold for early detection using Kullback-Leibler Divergence for unknown distribution data , 2016, Signal Process..

[9]  Carter Ratcliff 36 , 2012, The Hatak Witches.

[10]  E. Jeffrey,et al.  Photon arrival time quantum random number generation , 2009 .

[11]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[12]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[13]  Himanshu Tyagi,et al.  Universal Hashing for Information-Theoretic Security , 2014, Proceedings of the IEEE.

[14]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[15]  강희정,et al.  17 , 1995, The Hatak Witches.

[16]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[17]  John Rarity,et al.  Quantum Random-number Generation and Key Sharing , 1994 .

[18]  Paolo Villoresi,et al.  Enhanced security for multi-detector quantum random number generators , 2016, 1605.04808.

[19]  James F. Dynes,et al.  Long-Term Test of a Fast and Compact Quantum Random Number Generator , 2018, Journal of Lightwave Technology.

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[22]  D. V. Baak,et al.  Demonstrating optical beat notes through heterodyne experiments , 2002 .

[23]  He Xu,et al.  Postprocessing for quantum random number generators: entropy evaluation and randomness extraction , 2012, ArXiv.

[24]  Robert König,et al.  Sampling of Min-Entropy Relative to Quantum Knowledge , 2007, IEEE Transactions on Information Theory.

[25]  Feihu Xu,et al.  Experimental study of a quantum random-number generator based on two independent lasers , 2017 .

[26]  Quantum state measurement by realistic heterodyne detection. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[28]  Zhengyu Li,et al.  High speed continuous variable source-independent quantum random number generation , 2017, Quantum Science and Technology.

[29]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[30]  Caitlin R. S. Williams,et al.  Fast physical random number generator using amplified spontaneous emission. , 2010, Optics express.

[31]  Masahide Sasaki,et al.  Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system. , 2016, Optics letters.

[32]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[33]  Geoffrey Smith,et al.  Min-entropy as a resource , 2013, Inf. Comput..

[34]  Wei Chen,et al.  2 GHz clock quantum key distribution over 260 km of standard telecom fiber. , 2012, Optics letters.

[35]  권경학,et al.  4 , 1906, Undiscovered Country.

[36]  runden Tisch,et al.  AM , 2020, Catalysis from A to Z.

[37]  T. Symul,et al.  Maximization of Extractable Randomness in a Quantum Random-Number Generator , 2014, 1411.4512.

[38]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[39]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[40]  Paolo Villoresi,et al.  Source-device-independent heterodyne-based quantum random number generator at 17 Gbps , 2018, Nature Communications.

[41]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[42]  C. Ross Found , 1869, The Dental register.

[43]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[44]  Rajarshi Roy,et al.  Scalable parallel physical random number generator based on a superluminescent LED. , 2011, Optics letters.

[45]  D. Renker,et al.  Advances in solid state photon detectors , 2009 .

[46]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[47]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[48]  Yang Liu,et al.  Device-independent quantum random-number generation , 2018, Nature.

[49]  Miguel Herrero-Collantes,et al.  Quantum random number generators , 2016, 1604.03304.

[50]  Brian Hayes,et al.  Randomness as a Resource , 2001, American Scientist.

[51]  Mihir Bellare,et al.  "Pseudo-Random" Number Generation Within Cryptographic Algorithms: The DDS Case , 1997, CRYPTO.

[52]  Neri Merhav,et al.  Statistical Physics and Information Theory , 2010, Found. Trends Commun. Inf. Theory.

[53]  Boris Korzh,et al.  Simple 2.5 GHz time-bin quantum key distribution , 2018, 1804.05426.

[54]  김준영,et al.  § 15 , 1824, Fichte.

[55]  이기복 18 , 2000, Testament d'un patriote exécuté.

[56]  H. Zeng,et al.  Quantum random-number generator based on a photon-number-resolving detector , 2011 .

[57]  Jeffrey H. Shapiro,et al.  Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring , 2016, 1608.08300.

[58]  Z. L. Yuan,et al.  A direct GHz-clocked phase and intensity modulated transmitter applied to quantum key distribution. , 2018 .

[59]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[60]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[61]  M Jofre,et al.  True random numbers from amplified quantum vacuum. , 2011, Optics express.

[62]  Zach DeVito,et al.  Opt , 2017 .

[63]  L. Tian,et al.  Practical quantum random number generator based on measuring the shot noise of vacuum states , 2010 .

[64]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[65]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[66]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.