Fracture mechanics interpretation of multiple-creep cracking using damage-mechanics concepts

Abstract Damage-mechanics concepts are incorporated into a fracture-mechanics interpretation of multiple grain-boundary cracking in uniaxial tensile creep specimens that undergo power–law creep deformation. Initially, methods of evaluating the fracture–mechanics creep parameter C* for a structure containing a single macroscopic crack are extended to a uniform distribution of grain-boundary voids. Damage-mechanics models are then applied to describe damage accumulation. It is shown that, when the voids grow as disc-shaped cavities, the analysis yields predictions of growth rates which are consistent with characterizations of macroscopic crack growth behaviour involving the exhaustion of the available creep ductility in a process zone at the crack tip.MST/195

[1]  S. Floreen The creep fracture of wrought nickel-base alloys by a fracture mechanics approach , 1975 .

[2]  T. Nieh,et al.  Mechanisms of intergranular cavity nucleation and growth during creep , 1983 .

[3]  Michael F. Ashby,et al.  Intergranular fracture during power-law creep , 1979 .

[4]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[5]  W. Beeré Models of creep cavitation and their interrelationships , 1983 .

[6]  E G Ellison,et al.  The use of the C∗ parameter in predicting creep crack propagation rates , 1977 .

[7]  John W. Hutchinson,et al.  Singular behaviour at the end of a tensile crack in a hardening material , 1968 .

[8]  B. F. Dyson,et al.  Constrained Cavity Growth, Its Use in Quantifying Recent Creep Fracture Results , 1979 .

[9]  A. T. Price,et al.  Crack propagation under creep conditions in a quenched % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9h , 1973 .

[10]  D. R. J. Owen,et al.  Engineering approaches to high temperature design , 1983 .

[11]  A. Argon Intergranular cavitation in creeping alloys , 1983 .

[12]  M. Ashby,et al.  The growth of a dominant crack in a creeping material , 1982 .

[13]  I-Wei Chen,et al.  Mechanisms of cavity growth in creep , 1983 .

[14]  B. Dyson Constraints on diffusional cavity growth rates , 1976 .

[15]  R. Nicholson,et al.  The validity of various fracture mechanics methods at creep temperatures , 1975 .

[16]  G. Cocks,et al.  Ledge mechanism of growth of colonies of discontinuous precipitate in austenite , 1980 .

[17]  E G Ellison,et al.  Creep behaviour of components containing cracks—a critical review , 1978 .

[18]  G. A. Webster,et al.  Prediction of creep crack growth from uniaxial creep data , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  D. Smith,et al.  Characterizations of creep crack growth in 1 per cent Cr Mo V steel , 1981 .

[20]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[21]  D. Hull,et al.  The growth of grain-boundary voids under stress , 1959 .