Numerical calculation of the runaway electron distribution function and associated synchrotron emission

Synchrotron emission from runaway electrons may be used to diagnose plasma conditions during a tokamak disruption, but solving this inverse problem requires rapid simulation of the electron distribution function and associated synchrotron emission as a function of plasma parameters. Here we detail a framework for this forward calculation, beginning with an efficient numerical method for solving the Fokker-Planck equation in the presence of an electric field of arbitrary strength. The approach is continuum (Eulerian), and we employ a relativistic collision operator, valid for arbitrary energies. Both primary and secondary runaway electron generation are included. For cases in which primary generation dominates, a time-independent formulation of the problem is described, requiring only the solution of a single sparse linear system. In the limit of dominant secondary generation, we present the first numerical verification of an analytic model for the distribution function. The numerical electron distribution function in the presence of both primary and secondary generation is then used for calculating the synchrotron emission spectrum of the runaways. It is found that the average synchrotron spectra emitted from realistic distribution functions are not well approximated by the emission of a single electron at the maximum energy. © 2013 Elsevier B.V.

[1]  Jose Ramon Martin-Solis,et al.  Momentum–space structure of relativistic runaway electrons , 1998 .

[2]  Charles F. F. Karney,et al.  Numerical studies of current generation by radio‐frequency traveling waves , 1979 .

[3]  T. Fülöp,et al.  Runaway electron generation in a cooling plasma , 2005 .

[4]  Timo Pättikangas,et al.  Monte Carlo simulation of runaway electrons in a toroidal geometry , 1993 .

[5]  F. Andersson,et al.  Runaway electrons and the evolution of the plasma current in tokamak disruptions , 2006 .

[6]  J. Decker,et al.  Advanced 3‐D Electron Fokker‐Planck Transport Calculations , 2003 .

[7]  T. Fülöp,et al.  Destabilization of magnetosonic-whistler waves by a relativistic runaway beam , 2006 .

[8]  M. Landreman,et al.  Synchrotron radiation from runaway electron distributions in tokamaks , 2013, 1308.2099.

[9]  R. Kulsrud,et al.  Runaway electrons in a plasma , 1973 .

[10]  D. A. Humphreys,et al.  Visible imaging and spectroscopy of disruption runaway electrons in DIII-D , 2013 .

[11]  T. Fülöp,et al.  Runaway electron generation during plasma shutdown by killer pellet injection , 2008 .

[12]  L. Eriksson,et al.  Simulation of runaway electrons during tokamak disruptions , 2003 .

[13]  Y. Peysson,et al.  Calculation of rf current drive in tokamaks , 2008 .

[14]  S. Sharapov,et al.  Relativistic electron distribution function of a plasma in a near-critical electric field , 2006 .

[15]  Steve C. Chiu,et al.  Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model , 2000 .

[16]  N. J. Lopes Cardozo,et al.  A synchrotron radiation diagnostic to observe relativistic runaway electrons in a tokamak plasma , 2001 .

[17]  Dan M. Goebel,et al.  Observation of infrared synchrotron radiation from tokamak runaway electrons in TEXTOR , 1990 .

[18]  Tünde Fülöp,et al.  Runaway electron drift orbits in magnetostatic perturbed fields , 2011 .

[19]  M. O'Brien,et al.  Fokker–Planck studies of high power electron cyclotron heating in tokamaks , 1986 .

[20]  A. Karimi,et al.  Master‟s thesis , 2011 .

[21]  M. Rosenbluth,et al.  Theory for avalanche of runaway electrons in tokamaks , 1997 .

[22]  D. A. Humphreys,et al.  Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D , 2013 .

[23]  E. W. Herold,et al.  Controlled fusion , 1959, IRE Transactions on Electron Devices.

[24]  T. Fülöp,et al.  Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER , 2011 .

[25]  M. Rosenbluth,et al.  Fokker-Planck simulations mylb of knock-on electron runaway avalanche and bursts in tokamaks , 1998 .

[26]  Charles F. F. Karney,et al.  Efficiency of current drive by fast waves , 2005, physics/0501058.

[27]  J. W. Connor,et al.  Relativistic limitations on runaway electrons , 1975 .

[28]  G. Bekefi,et al.  Radiation Processes in Plasmas , 1969 .

[29]  P. Rutherford,et al.  ION RUNAWAY IN TOKAMAK DISCHARGES. , 1972 .

[30]  Charles F. F. Karney,et al.  Current in wave-driven plasmas , 1986 .

[31]  P. Helander,et al.  Positron creation and annihilation in tokamak plasmas with runaway electrons. , 2003, Physical review letters.