The Shannon Total Variation

Discretization schemes commonly used for total variation regularization lead to images that are difficult to interpolate, which is a real issue for applications requiring subpixel accuracy and aliasing control. In the present work, we reconciliate total variation with Shannon interpolation and study a Fourier-based estimate that behaves much better in terms of grid invariance, isotropy, artifact removal and subpixel accuracy. We show that this new variant (called Shannon total variation) can be easily handled with classical primal–dual formulations and illustrate its efficiency on several image processing tasks, including deblurring, spectrum extrapolation and a new aliasing reduction algorithm.

[1]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[2]  Jack Dongarra,et al.  Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.

[3]  Lionel Moisan,et al.  Total Variation denoising using iterated conditional expectation , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[4]  Pierre Weiss,et al.  A proximal method for inverse problems in image processing , 2009, 2009 17th European Signal Processing Conference.

[5]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[6]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[7]  Bernard Rouge,et al.  Nonlinear spectral extrapolation: new results and their application to spatial and medical imaging , 1995, Optics + Photonics.

[8]  Michael Unser,et al.  Fast B-spline Transforms for Continuous Image Representation and Interpolation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[10]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[11]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[12]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[13]  Klaas Paul Pruessmann,et al.  Realistic Analytical Phantoms for Parallel Magnetic Resonance Imaging , 2012, IEEE Transactions on Medical Imaging.

[14]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[15]  Jean-Michel Morel,et al.  Influence of Unknown Exterior Samples on Interpolated Values for Band-Limited Images , 2016, SIAM J. Imaging Sci..

[16]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[17]  V. Kroupa,et al.  Digital spectral analysis , 1983, Proceedings of the IEEE.

[18]  Michael Unser,et al.  Cardinal spline filters: Stability and convergence to the ideal sinc interpolator , 1992, Signal Process..

[19]  Salvatore Lanzavecchia,et al.  A Moving Window Shannon Reconstruction Algorithm for Image Interpolation , 1994, J. Vis. Commun. Image Represent..

[20]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[21]  R. Marks Introduction to Shannon Sampling and Interpolation Theory , 1990 .

[22]  L. Moisan How to discretize the Total Variation of an image? , 2007 .

[23]  Thomas Schanze,et al.  Sinc interpolation of discrete periodic signals , 1995, IEEE Trans. Signal Process..

[24]  Guy Gilboa,et al.  A Spectral Approach to Total Variation , 2013, SSVM.

[25]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[26]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[27]  José Carlos Príncipe,et al.  Comments on "Sinc interpolation of discrete periodic signals" , 1998, IEEE Trans. Signal Process..

[28]  Laurent Condat,et al.  Discrete Total Variation: New Definition and Minimization , 2017, SIAM J. Imaging Sci..

[29]  D. Ruderman The statistics of natural images , 1994 .

[30]  Basarab Matei,et al.  Model Sets and New Versions of Shannon Sampling Theorem , 2016 .

[31]  A. Chambolle,et al.  An introduction to Total Variation for Image Analysis , 2009 .

[32]  Aggelos K. Katsaggelos,et al.  Total variation super resolution using a variational approach , 2008, 2008 15th IEEE International Conference on Image Processing.

[33]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[34]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[35]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[36]  Andy M. Yip,et al.  Simultaneous total variation image inpainting and blind deconvolution , 2005, Int. J. Imaging Syst. Technol..

[37]  Pascal Getreuer,et al.  Linear Methods for Image Interpolation , 2011, Image Process. Line.

[38]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[39]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[40]  Jean-François Aujol,et al.  Irregular to Regular Sampling, Denoising, and Deconvolution , 2009, Multiscale Model. Simul..

[41]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[42]  Selmer M. Johnson,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[43]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[44]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[45]  François Malgouyres,et al.  Total variation based interpolation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[46]  Piotr Indyk Explicit constructions for compressed sensing of sparse signals , 2008, SODA '08.

[47]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[48]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[49]  Basarab Matei,et al.  A variant of compressed sensing , 2009 .

[50]  Thibaud Briand,et al.  How to Apply a Filter Defined in the Frequency Domain by a Continuous Function , 2016, Image Process. Line.

[51]  Lionel Moisan,et al.  Periodic Plus Smooth Image Decomposition , 2011, Journal of Mathematical Imaging and Vision.

[52]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[53]  W. Ring Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .

[54]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[55]  Lionel Moisan,et al.  Posterior Expectation of the Total Variation Model: Properties and Experiments , 2013, SIAM J. Imaging Sci..

[56]  Leonid P. Yaroslavsky,et al.  Signal sinc-interpolation: a fast computer algorithm , 1996 .

[57]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[58]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[59]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[60]  Jean-Christophe Pesquet,et al.  A Convex Optimization Approach for Depth Estimation Under Illumination Variation , 2009, IEEE Transactions on Image Processing.

[61]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[62]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[63]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[64]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[65]  Bernard Rougé,et al.  SMOS images restoration from L1A data: A sparsity-based variational approach , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[66]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[67]  Mohamed-Jalal Fadili,et al.  Total Variation Projection With First Order Schemes , 2011, IEEE Transactions on Image Processing.

[68]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[69]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[70]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[71]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[72]  Tieyong Zeng,et al.  Total Variation Restoration of Images Corrupted by Poisson Noise with Iterated Conditional Expectations , 2015, SSVM.

[73]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[74]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[75]  Michael Unser,et al.  Ten good reasons for using spline wavelets , 1997, Optics & Photonics.

[76]  Marc Teboulle,et al.  A simple algorithm for a class of nonsmooth convex-concave saddle-point problems , 2015, Oper. Res. Lett..

[77]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[78]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[79]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[80]  Antonin Chambolle,et al.  An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing , 2011, SIAM J. Imaging Sci..