Flexible margin-based classification techniques

SEO YOUNG PARK: Flexible Margin-Based Classification Techniques (Under the direction of Dr. Yufeng Liu) Classification is a very useful statistical tool for information extraction. Among numerous classification methods, margin-based classification techniques have attracted a lot of attention. It can be typically expressed as a general minimization problem in the form of loss + penalty, where the loss function controls goodness of fit of the training data and the penalty term enforces smoothness of the model. Since the loss function decides how functional margins affect the resulting margin-based classifier, one can modify the existing loss functions to obtain classifiers with desirable properties. In this research, we design several new margin-based classifiers, via modifying loss functions of two well-known classifiers, Penalized Logistic Regression (PLR) and the Support Vector Machine (SVM). In particular, we propose three new binary classification techniques, Robust Penalized Logistic Regression (RPLR), Bounded Constraint Machine (BCM), and the Balancing Support Vector Machine (BSVM). For multicategory case, we propose the multicagegory Composite Least Squares (CLS) classifier, a new multicategory classifier based on the squared loss function. We study properties of the new methods and provide efficient computational algorithms. Simulated and microarray gene expression data analysis examples are used to demonstrate competitive performance of the proposed methods.

[1]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[2]  Yufeng Liu,et al.  Probability estimation for large-margin classifiers , 2008 .

[3]  J. S. Marron,et al.  Distance-Weighted Discrimination , 2007 .

[4]  Xiaodong Lin,et al.  Gene expression Gene selection using support vector machines with non-convex penalty , 2005 .

[5]  Hao Helen Zhang,et al.  Adaptive Lasso for Cox's proportional hazards model , 2007 .

[6]  R. Carroll,et al.  Conditionally Unbiased Bounded-Influence Estimation in General Regression Models, with Applications to Generalized Linear Models , 1989 .

[7]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[8]  Yi Lin,et al.  Support Vector Machines and the Bayes Rule in Classification , 2002, Data Mining and Knowledge Discovery.

[9]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[10]  Hao Helen Zhang,et al.  Component selection and smoothing in smoothing spline analysis of variance models -- COSSO , 2003 .

[11]  J. Copas Binary Regression Models for Contaminated Data , 1988 .

[12]  Robert Tibshirani,et al.  The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..

[13]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[14]  Robert Tibshirani,et al.  1-norm Support Vector Machines , 2003, NIPS.

[15]  D. Pregibon Resistant fits for some commonly used logistic models with medical application. , 1982, Biometrics.

[16]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[17]  Yufeng Liu Multicategory psi-learning and support vector machine , 2004 .

[18]  Hoai An Le Thi,et al.  Solving a Class of Linearly Constrained Indefinite Quadratic Problems by D.C. Algorithms , 1997 .

[19]  S. Morgenthaler Least-Absolute-Deviations Fits for Generalized Linear Models , 1992 .

[20]  Ana M. Bianco,et al.  Robust Estimation in the Logistic Regression Model , 1996 .

[21]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[22]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[23]  Changyi Park,et al.  A Bahadur Representation of the Linear Support Vector Machine , 2008, J. Mach. Learn. Res..

[24]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[25]  Yufeng Liu,et al.  Robust Truncated Hinge Loss Support Vector Machines , 2007 .

[26]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[27]  R. Horst,et al.  DC Programming: Overview , 1999 .

[28]  Mee Young Park,et al.  Penalized logistic regression for detecting gene interactions. , 2008, Biostatistics.

[29]  R. R. Bahadur A Note on Quantiles in Large Samples , 1966 .

[30]  Yi Lin Multicategory Support Vector Machines, Theory, and Application to the Classification of . . . , 2003 .

[31]  R. Welsch,et al.  Efficient Bounded-Influence Regression Estimation , 1982 .

[32]  Xiwu Lin,et al.  Smoothing spline ANOVA models for large data sets with Bernoulli observations and the randomized GACV , 2000 .

[33]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[34]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[35]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[36]  G. Wahba Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV 1 , 1998 .

[37]  Yi Lin A note on margin-based loss functions in classification , 2004 .

[38]  Hao Helen Zhang Variable selection for support vector machines via smoothing spline anova , 2006 .

[39]  Glenn Fung,et al.  Proximal support vector machine classifiers , 2001, KDD '01.

[40]  A. Nobel,et al.  Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data , 2008 .

[41]  Christophe Croux,et al.  Implementing the Bianco and Yohai estimator for logistic regression , 2003, Comput. Stat. Data Anal..

[42]  Yi Lin,et al.  Support Vector Machines for Classification in Nonstandard Situations , 2002, Machine Learning.

[43]  Ji Zhu,et al.  Kernel Logistic Regression and the Import Vector Machine , 2001, NIPS.

[44]  Yufeng Liu,et al.  Fisher Consistency of Multicategory Support Vector Machines , 2007, AISTATS.

[45]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[46]  Kristin P. Bennett,et al.  Multicategory Classification by Support Vector Machines , 1999, Comput. Optim. Appl..

[47]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[48]  D. Ruppert,et al.  Optimally bounded score functions for generalized linear models with applications to logistic regression , 1986 .

[49]  Howard D. Bondell,et al.  Minimum distance estimation for the logistic regression model , 2005 .

[50]  S. Hosseinian,et al.  Robust inference for generalized linear models , 2009 .

[51]  Jason Weston,et al.  Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..

[52]  Xiaotong Shen,et al.  On L1-Norm Multiclass Support Vector Machines , 2007 .

[53]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[54]  D. Hunter,et al.  Variable Selection using MM Algorithms. , 2005, Annals of statistics.

[55]  Yong Liu,et al.  Unbiased estimate of generalization error and model selection in neural network , 1995, Neural Networks.

[56]  Jason Aaron Edward Weston,et al.  Extensions to the support vector method , 1999 .

[57]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[58]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[59]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  G. Wahba,et al.  A GENERALIZED APPROXIMATE CROSS VALIDATION FOR SMOOTHING SPLINES WITH NON-GAUSSIAN DATA , 1996 .

[61]  S. P. Pederson,et al.  On Robustness in the Logistic Regression Model , 1993 .

[62]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[63]  Hao Helen Zhang,et al.  Multiclass Proximal Support Vector Machines , 2006 .

[64]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[65]  Michael I. Jordan,et al.  Convexity, Classification, and Risk Bounds , 2006 .