Physical properties of Be-based fluoroperovskite compounds XBeF3 (X = K, Rb): a first-principles study

In this study, we used the ab-initio computational tools as implemented in the CASTEP code to explore the effects of pressure on the structural, elastic, electronic, thermodynamic and optical properties of the fluoroperovskite compounds XBeF3 (X = K, Rb) based on Being. Exchange–correlation interactions were modeled using the GGA-PBEsol functional. The ground state of the title materials was characterized by calculating the optimized lattice parameter, the bulk modulus B and its pressure derivative, and the Goldsmith tolerance factor. These materials exhibit structural stability in the cubic structure even when subjected to significant pressure levels, extending up to 18 GPa. The analysis of numerical assessments of single-crystal elastic constants (Cij ), polycrystalline elastic moduli, namely shear modulus (G), Young’s modulus and Poisson’s ratio, as well as the anisotropy factor (A), highlights the mechanical stability, elastic anisotropy and ductility of considered the compounds. The thermodynamic properties of these materials were studied through the Debye quasi-harmonic model. Analysis of energy band structures and density of states spectra shows that XBeF3 (X = K, Rb) is insulating in nature, with band gaps of 7.99 and 7.26 eV, respectively. Additionally, we calculated the linear optical spectra, including dielectric function, absorption coefficient, refractive index, optical reflectivity, and energy loss function. Based on the results obtained, these materials could be used in various optoelectronic devices operating in the UV spectrum and in energy storage devices.

[1]  Abdullah,et al.  Structural, electronic, magnetic and elastic properties of xenon-based fluoroperovskites XeMF3 (M = Ti, V, Zr, Nb) via DFT studies , 2022, RSC advances.

[2]  A. Z. Dewidar,et al.  Theoretical Investigations into the Different Properties of Al-Based Fluoroperovskite AlMF3 (M = Cr, B) Compounds by the TB-MBJ Potential Method , 2022, Materials.

[3]  A. Bouhemadou,et al.  Structural, elastic, electronic and optical properties of the half-Heusler ScPtSb and YPtSb compounds under pressure , 2021, Condensed Matter Physics.

[4]  X. Bokhimi,et al.  Ternary halide perovskites for possible optoelectronic applications revealed by Artificial Intelligence and DFT calculations , 2021, Materials Chemistry and Physics.

[5]  D. Maouche,et al.  An ab initio study of structural, elastic and electronic properties of hexagonal MAuGe (M = Lu, Sc) compounds , 2021, Condensed Matter Physics.

[6]  Atikur Rahman,et al.  Study of structural, elastic, electronics, optical and thermodynamic properties of Hf2PbC under pressure by ab-initio method , 2021 .

[7]  M. A. Rahman,et al.  Comprehensive study on the physical properties of tetragonal LaTGe3 (T = Rh, Ir, or Pd) compounds: An ab initio investigation , 2021, AIP Advances.

[8]  A. Verma,et al.  Computational determination of structural, electronic, optical, thermoelectric and thermodynamic properties of hybrid perovskite CH3CH2NH3GeI3: An emerging material for photovoltaic cell , 2020, Materials Chemistry and Physics.

[9]  N. Mehmood,et al.  Ab initio investigations of structural, elastic, electronic and optical properties of the fluoroperovskite TIXF3 (X=Ca, Cd, Hg, and Mg) compounds , 2020, Materials Research Express.

[10]  Muhammad Iqbal Hussain,et al.  Investigations of structural, electronic and optical properties of TM-GaO3 (TM = Sc, Ti, Ag) perovskite oxides for optoelectronic applications: a first principles study , 2020, Materials Research Express.

[11]  Z. Kechidi,et al.  Investigation of structural and elastic properties of monoclinic Ba2P7X (X = Cl, Br, I) Zintl Salts compounds , 2019, Condensed Matter Physics.

[12]  E. Ching-Prado Stress dependence of structure, electronic and optical properties of BaTiO3 from WC, VdW-DF-C09 and HSE functional calculations , 2018, Ferroelectrics.

[13]  R. Ahmed,et al.  Structural, electronic, optical and thermodynamic investigations of NaXF 3 (X = Ca and Sr): First-principles calculations , 2018 .

[14]  Yang Wang,et al.  First-principles Study of the Correlation between Host Components and Properties of IAIIAF3 Cubic Perovskite Compounds , 2017 .

[15]  Sandeep,et al.  Investigation of the structural, electronic and optical properties of the cubic RbMF3 perovskites (M = Be, Mg, Ca, Sr and Ba) using modified Becke-Johnson exchange potential , 2017 .

[16]  H. Bouafia,et al.  Structural, mechanical, electronic and thermal properties of KZnF3 and AgZnF3 Perovskites: FP-(L)APW+lo calculations , 2016 .

[17]  Romain Gaillac,et al.  ELATE: an open-source online application for analysis and visualization of elastic tensors , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Yixin Zhao,et al.  Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. , 2016, Chemical Society reviews.

[19]  K. Ostrikov,et al.  Physical properties of predicted Ti2CdN versus existing Ti2CdC MAX phase: An ab initio study , 2015, 1511.08632.

[20]  A. Bouhemadou,et al.  Elastic and thermodynamic properties of the SiB2O4 (B=Mg, Zn and Cd) cubic spinels: An ab initio FP-LAPW study , 2015 .

[21]  S. Syrotyuk,et al.  The GW electronic structure of cubic RbMF3 perovskites (M = Be, Mg, Ca, Sr, Ba) , 2015 .

[22]  T. Ishikawa,et al.  Perovskite fluoride crystals as light emitting materials in vacuum ultraviolet region , 2014 .

[23]  Chia-Liang Sun,et al.  Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes , 2013 .

[24]  A. Islam,et al.  Rare earth rhodium borides RRh3B (R = Y, Zr, and Nb): mechanical, thermal and optical properties , 2012, The European Physical Journal B.

[25]  G. Murtaza,et al.  First principle study of cubic perovskites: AgTF3 (T=Mg, Zn) , 2011 .

[26]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[27]  A. Bouhemadou CALCULATED STRUCTURAL AND ELASTIC PROPERTIES OF M2InC(M=Sc, Ti, V, Zr, Nb, Hf, Ta) , 2008 .

[28]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[29]  C. Dotzler,et al.  Radiation-induced optically and thermally stimulated luminescence in RbCdF3 and RbMgF3 , 2008 .

[30]  Stanislaus S. Wong,et al.  Green Synthesis and Property Characterization of Single‐Crystalline Perovskite Fluoride Nanorods , 2008 .

[31]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[32]  Jun Zhu,et al.  Thermodynamic properties of MgO under high pressure from first-principles calculations , 2005 .

[33]  H. Mizuseki,et al.  Design of wide-gap fluoride heterostructures for deep ultraviolet optical devices , 2004 .

[34]  H. Mizuseki,et al.  Design Proposal of Light Emitting Diode in Vacuum Ultraviolet Based on Perovskite-Like Fluoride Crystals , 2004 .

[35]  Víctor Luaña,et al.  GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model☆ , 2004 .

[36]  B. Lei,et al.  Synthesis of the complex fluoride LiBaF3 and optical spectroscopy properties of LiBaF3:M(M=Eu,Ce) through a solvothermal process , 2003 .

[37]  Joongoo Kang,et al.  First-principles study of the structural phase transformation of hafnia under pressure , 2003 .

[38]  H. Mizuseki,et al.  Band Structures of Perovskite-Like Fluorides for Vacuum-Ultraviolet-Transparent Lens Materials , 2002 .

[39]  Jan Almlöf,et al.  General methods for geometry and wave function optimization , 1992 .

[40]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[41]  H. Paus,et al.  A new color center laser on the basis of lead-doped KMgF3 , 1986 .

[42]  Joshua R. Smith,et al.  A universal equation of state for solids , 1986 .

[43]  R. Daniels,et al.  Experimental-Study of the Electronic-Structure of Kmgf3 , 1983 .

[44]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  J. Nouet,et al.  Analyse radiocristallographique de la distorsion magnétostrictive dans les antiferromagnétiques KCof3, RbCof3 et TlCof3 , 1975 .

[47]  M. Eibschütz,et al.  Antiferromagnetic-piezoelectric crystals: BaMe4 (M = Mn, Fe, Co and Ni) , 1968 .

[48]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[49]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[50]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[51]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[52]  D. Ahmed,et al.  Elastic properties of ABF3 (A:Ag,K and B:Mg, Zn) perovskites , 2018 .

[53]  H. Qin,et al.  The Mechanical Properties and Elastic Anisotropies of Cubic Ni 3 Al from First Principles Calculations , 2018 .

[54]  A. A. Mubarak,et al.  Ab initio Study of Ag-Based Fluoroperovskite AgMF3 (M = Co and Ni) Compounds , 2017, Journal of Electronic Materials.

[55]  M. Sahnouna,et al.  Full potential calculation of structural , electronic and optical properties of KMgF 3 , 2005 .

[56]  Lars Fast,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals : Application to TiSi 2 , 1998 .

[57]  K A Yakimovich,et al.  Thermophysical properties of materials , 1977 .