Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems
暂无分享,去创建一个
[1] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[2] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[3] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[4] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[5] Claes Johnson,et al. Computational Differential Equations , 1996 .
[6] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[7] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[8] Peter M. Pinsky,et al. A multiscale finite element method for the Helmholtz equation , 1998 .
[9] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[10] Thomas J. R. Hughes,et al. The Continuous Galerkin Method Is Locally Conservative , 2000 .
[11] Carsten Carstensen,et al. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..
[12] Todd Arbogast,et al. A two-scale numerical subgrid technique for waterflood simulations , 2002 .
[13] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[14] Michael J. Holst,et al. An Odyssey into Local Refinement and Multilevel Preconditioning III: Implementation and Numerical Experiments , 2003, SIAM J. Sci. Comput..
[15] M. Larson,et al. Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems , 2005 .
[16] Burak Aksoylu,et al. AN ODYSSEY INTO LOCAL REFINEMENT AND MULTILEVEL PRECONDITIONING II: STABILIZING HIERARCHICAL BASIS METHODS , 2005 .
[17] Burak Aksoylu,et al. AN ODYSSEY INTO LOCAL REFINEMENT AND MULTILEVEL PRECONDITIONING I: OPTIMALITY OF THE BPX PRECONDITIONER , 2005 .