Ion implantation technology for silicon carbide

Abstract Ion implantation is a key process technique for semiconductor materials, in particular silicon, for local tailoring of the semiconductor properties. The wide bandgap semiconductor silicon carbide (SiC) features outstanding material properties for high power and high temperature electronic devices, but the properties of SiC also make it difficult to manufacture and process the material. The development of implantation technology for SiC has therefore necessitated several changes from mainstream silicon implantation technology. This paper will discuss the difficulties with implantation of SiC for manufacturing of electronic devices and also describe how the problems have been overcome, for instance by implantation at elevated temperatures and using high temperature post-implant annealing.

[1]  Y. Tajima,et al.  Diffusion of ion implanted aluminum in silicon carbide , 1982 .

[2]  M. Melloch,et al.  SiC power Schottky and PiN diodes , 2002 .

[3]  A. Ellison,et al.  High temperature chemical vapor deposition of SiC , 1996 .

[4]  A. Milnes,et al.  Diffusion of nitrogen into silicon carbide single crystals doped with aluminum , 1966 .

[5]  J. Cooper,et al.  Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications , 2014 .

[6]  Heiner Ryssel,et al.  Determination of aluminum diffusion parameters in silicon , 2002 .

[7]  A. Hallén,et al.  Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species , 2015 .

[8]  J. Wong-Leung,et al.  Formation of precipitates in heavily boron doped 4H-SiC , 2006 .

[9]  H. Hearne,et al.  A 1680-V (at 1 $\hbox{mA/cm}^{2}$ ) 54-A (at 780 $\hbox{W/cm}^{2}$ ) Normally ON 4H-SiC JFET With 0.143- $\hbox{cm}^{2}$ Active Area , 2008 .

[10]  S. Saddow,et al.  High Temperature Implant Activation in 4H and 6H-SiC in a Silane Ambient to Reduce Step Bunching , 2000 .

[11]  W. Skorupa,et al.  p-Type doping of SiC by high dose Al implantation—problems and progress , 2001 .

[12]  G. Pensl,et al.  Electrical activation of high concentrations of N+ and P+ ions implanted into 4H–SiC , 2002 .

[13]  L. Griffiths Nature of Rectifying Junctions in α‐Silicon Carbide , 1965 .

[14]  A. Hallén,et al.  Formation of carbon vacancy in 4H silicon carbide during high-temperature processing , 2014 .

[15]  V. Sokolov,et al.  Enhanced Diffusion of High-Temperature Implanted Aluminum in Silicon Carbide , 1995 .

[16]  R. Yakimova,et al.  Dislocation loop evolution in ion implanted 4H-SiC , 2003 .

[17]  Tsunenobu Kimoto,et al.  Performance limiting surface defects in SiC epitaxial p-n junction diodes , 1999 .

[18]  N. Kobayashi,et al.  Structure and distribution of secondary defects in high energy ion implanted 4H-SiC , 2001 .

[19]  R. Lossy,et al.  Doping of 3C-SiC by implantation of nitrogen at high temperatures , 1997 .

[20]  R. Nieminen,et al.  Comprehensive ab initio study of properties of monovacancies and antisites in 4H-SiC , 2001 .

[21]  T. Abe,et al.  Diffusion coefficient of a pair of nitrogen atoms in float‐zone silicon , 1988 .

[22]  H. Matsunami,et al.  VPE Growth of SiC on Step-Controlled Substrates , 1989 .

[23]  R. Rizzoli,et al.  Carbon-Cap for Ohmic Contacts on Ion-Implanted 4H-SiC , 2010 .

[24]  Wolfgang J. Choyke,et al.  Electrical and Optical Characterization of SiC , 1993 .

[25]  J. Bluet,et al.  Activation of aluminum implanted at high doses in 4H–SiC , 2000 .

[26]  Y. Sugawara,et al.  High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (112~0) face , 1999, IEEE Electron Device Letters.

[27]  Jang-Kwon Lim,et al.  Design and Characterization of Newly Developed 10 kV 2 A SiC p-i-n Diode for Soft-Switching Industrial Power Supply , 2015, IEEE Transactions on Electron Devices.

[28]  M. V. Rao,et al.  Microwave Annealing of Very High Dose Aluminum-Implanted 4H-SiC , 2011 .

[29]  R. Scace,et al.  Nitrogen Incorporation in SiC , 1965 .

[30]  F. Gao,et al.  Irradiation-induced defect clustering and amorphization in silicon carbide , 2010 .

[31]  A. Hallén,et al.  Transient enhanced diffusion of implanted boron in 4H-silicon carbide , 2000 .

[32]  E Janzén,et al.  Negative-U system of carbon vacancy in 4H-SiC. , 2012, Physical review letters.