Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester

Cantilever driving low frequency piezoelectric energy harvester (CANDLE) has been found as a promising structure for vibration energy harvesting. This paper presents the nonlinear output properties of the CANDLE to optimize the performance of the device. Simulation results of the finite element method illustrate that nonlinear contacts between the cymbal transducers and the cantilever beam are main reasons of the nonlinear output. However, high excitation acceleration of the nonlinear leap point limits the application of the device. Based on the simulation results and theory analysis, the excitation acceleration is reduced to 30 m/s2 by increasing the proof mass.

[1]  Michael J. Anderson,et al.  A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism , 2008 .

[2]  Daniel J. Inman,et al.  Energy Harvesting Technologies , 2008 .

[3]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[4]  Qing-Ming Wang,et al.  Piezoelectric Energy Harvesting using Single Crystal Pb(Mg1/3Nb2/3)O 3-xPbTiO3 (PMN-PT) Device , 2009 .

[5]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[6]  Wei Wang,et al.  Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal cantilever , 2010 .

[7]  D. Markley,et al.  Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment , 2004 .

[8]  Siu Wing Or,et al.  Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal , 2010 .

[9]  K. Uchino,et al.  Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations , 2005 .

[10]  L. Luo,et al.  Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71Pb(Mg1∕3Nb2∕3)O3–0.29PbTiO3 single crystal , 2007 .

[11]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[12]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[13]  Skandar Basrour,et al.  Integrated power harvesting system including a MEMS generator and a power management circuit , 2008 .

[14]  Wenning Di,et al.  Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 , 2012 .

[15]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[16]  S. Priya,et al.  Multimodal system for harvesting magnetic and mechanical energy , 2008 .

[17]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[18]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[19]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[20]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .