The influence of global cues and local coupling on the rate of synchronization in the presence of time delays

The influence of global cues and local coupling on the rate of synchronization is analyzed in the presence of delayed interaction. First we give a delay-dependent synchronization condition. Then we prove that a stronger global cue always leads to a faster synchronization rate, even when it is only connected to a small number of nodes and the time delays in different channels are nonidentical. The local coupling is proven to have no influence on the synchronization rate when the global cue affects the whole network uniformly and delays in different channels are identical and small. This points out a way to elucidate complex synchronization properties in, e.g., biological networks. At last, using a published software DDE-BIFTOOL, synchronization rates are numerically calculated in the case study to confirm the theoretical predictions.

[1]  Richard A. Brualdi,et al.  Combinatorial matrix theory , 1991 .

[2]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[3]  Hermann Kopetz,et al.  Clock Synchronization in Distributed Real-Time Systems , 1987, IEEE Transactions on Computers.

[4]  Yongqiang Wang,et al.  Energy-Efficient Pulse-Coupled Synchronization Strategy Design for Wireless Sensor Networks Through Reduced Idle Listening , 2012, IEEE Transactions on Signal Processing.

[5]  Jinde Cao,et al.  Global Synchronization of Linearly Hybrid Coupled Networks with Time-Varying Delay , 2008, SIAM J. Appl. Dyn. Syst..

[6]  Zhongxin Liu,et al.  Pinning control of weighted general complex dynamical networks with time delay , 2007 .

[7]  Yu-Ping Tian,et al.  Consensus of Multi-Agent Systems With Diverse Input and Communication Delays , 2008, IEEE Transactions on Automatic Control.

[8]  Pierre-Alexandre Bliman,et al.  Average consensus problems in networks of agents with delayed communications , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  M. A. Henson,et al.  A molecular model for intercellular synchronization in the mammalian circadian clock. , 2007, Biophysical journal.

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  M. G. Earl,et al.  Synchronization in oscillator networks with delayed coupling: a stability criterion. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[13]  Yongqiang Wang,et al.  Increasing Sync Rate of Pulse-Coupled Oscillators via Phase Response Function Design: Theory and Application to Wireless Networks , 2012, IEEE Transactions on Control Systems Technology.

[14]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[15]  Yongqiang Wang,et al.  Exponential Synchronization Rate of Kuramoto Oscillators in the Presence of a Pacemaker , 2012, IEEE Transactions on Automatic Control.

[16]  Xiang Li,et al.  Control and Flocking of Networked Systems via Pinning , 2010, IEEE Circuits and Systems Magazine.

[17]  Xiang Li,et al.  Some Recent Advances in Complex Networks Synchronization , 2009, Recent Advances in Nonlinear Dynamics and Synchronization.

[18]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[19]  A. Jadbabaie,et al.  Effects of Delay in Multi-Agent Consensus and Oscillator Synchronization , 2010, IEEE Transactions on Automatic Control.

[20]  ZhouJin,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008 .

[21]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations , 2000 .

[22]  Yongqiang Wang,et al.  On influences of global and local cues on the rate of synchronization of oscillator networks , 2011, Autom..

[23]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[24]  Erik D. Herzog,et al.  Neurons and networks in daily rhythms , 2007, Nature Reviews Neuroscience.

[25]  Panganamala Ramana Kumar,et al.  Fundamental Limits on Synchronizing Clocks Over Networks , 2011, IEEE Transactions on Automatic Control.

[26]  Jean-Jacques E. Slotine,et al.  Contraction analysis of time-delayed communications and group cooperation , 2006, IEEE Transactions on Automatic Control.

[27]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[28]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[29]  Soon-Jo Chung,et al.  Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems , 2007, IEEE Transactions on Robotics.

[30]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[31]  Takehiro Mori,et al.  Stability of x(t) = Ax(t) + Bx(t 8.9çτ) , 1989 .

[32]  M. Spong,et al.  Agreement with non-uniform information delays , 2006, 2006 American Control Conference.

[33]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[34]  Amr El Abbadi,et al.  Convergence Rates of Distributed Average Consensus With Stochastic Link Failures , 2010, IEEE Transactions on Automatic Control.

[35]  H. Kokame,et al.  Stability of x(t)=Ax(t)+Bx(t- tau ) , 1989 .

[36]  Giovanni Costa,et al.  Shift work and occupational medicine: an overview. , 2003, Occupational medicine.

[37]  Mario di Bernardo,et al.  Contraction Theory and Master Stability Function: Linking Two Approaches to Study Synchronization of Complex Networks , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[38]  Zengqiang Chen,et al.  Pinning control of complex dynamical networks with heterogeneous delays , 2008, Comput. Math. Appl..

[39]  Yongcan Cao,et al.  Distributed Coordination of Multi-agent Networks , 2011 .