Hutchinson’s theorem in semimetric spaces
暂无分享,去创建一个
[1] Mihály Bessenyei. Nonlinear quasicontractions in complete metric spaces , 2015 .
[2] J. Matkowski. Integrable solutions of functional equations , 1975 .
[3] V. Berinde. Iterative Approximation of Fixed Points , 2007 .
[4] Mihály Bessenyei,et al. A contraction principle in semimetric spaces , 2014, 1401.1709.
[5] Wallace Alvin Wilson,et al. On Semi-Metric Spaces , 1931 .
[6] N. Hussain,et al. On weak quasicontractions in $b$-metric spaces , 2019, Publicationes Mathematicae Debrecen.
[7] N. Dung,et al. On regular semimetric spaces having strong triangle functions , 2017 .
[8] Fred Galvin,et al. Completeness in semimetric spaces , 1984 .
[9] J. Jachymski,et al. Nonlinear Contractions on Semimetric Spaces , 1995 .
[10] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[11] S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .
[12] Mihály Bessenyei. The contraction principle in extended context , 2016, 1605.03950.
[13] F. Browder. Remarks on fixed point theorems of contractive type , 1979 .
[14] W. Groß. Grundzüge der Mengenlehre , 1915 .
[15] D. Pompeiu,et al. Sur la continuité des fonctions de variables complexes , 1905 .
[16] W. Groß. Kreis und Kugel , 1917 .
[17] Dennis K. Burke. Cauchy sequences in semimetric spaces , 1972 .
[18] On functions preserving regular semimetrics and quasimetrics satisfying the relaxed polygonal inequality , 2020 .
[19] F. Browder. On the convergence of successive applications for nonlinear functional equations , 1968 .
[20] L. F. McAuley. A RELATION BETWEEN PERFECT SEPARABILITY, COMPLETENESS, AND NORMALITY IN SEMI-METRIC SPACES , 1956 .
[21] K. Deimling. Fixed Point Theory , 2008 .
[22] Hutchinson without Blaschke: An alternative way to fractals , 2020 .
[23] J. Jachymski,et al. Two refinements of Frink’s metrization theorem and fixed point results for Lipschitzian mappings on quasimetric spaces , 2018, Aequationes mathematicae.