Hutchinson’s theorem in semimetric spaces

One of the important consequences of the Banach Fixed Point Theorem is Hutchinson’s theorem which states the existence and uniqueness of fractals in complete metric spaces. The aim of this paper is to extend this theorem for semimetric spaces using the results of Bessenyei and Páles published in 2017. In doing so, some properties of semimetric spaces as well as of the fractal space are investigated. We extend Hausdorff’s theorem to characterize compactness and Blaschke’s theorems to characterize the completeness of the fractal space. Based on these preliminaries, an analogue of Hutchinson’s Theorem in the setting of semimetric spaces is proved and finally, error estimates and stability of fractals are established as well.

[1]  Mihály Bessenyei Nonlinear quasicontractions in complete metric spaces , 2015 .

[2]  J. Matkowski Integrable solutions of functional equations , 1975 .

[3]  V. Berinde Iterative Approximation of Fixed Points , 2007 .

[4]  Mihály Bessenyei,et al.  A contraction principle in semimetric spaces , 2014, 1401.1709.

[5]  Wallace Alvin Wilson,et al.  On Semi-Metric Spaces , 1931 .

[6]  N. Hussain,et al.  On weak quasicontractions in $b$-metric spaces , 2019, Publicationes Mathematicae Debrecen.

[7]  N. Dung,et al.  On regular semimetric spaces having strong triangle functions , 2017 .

[8]  Fred Galvin,et al.  Completeness in semimetric spaces , 1984 .

[9]  J. Jachymski,et al.  Nonlinear Contractions on Semimetric Spaces , 1995 .

[10]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[11]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[12]  Mihály Bessenyei The contraction principle in extended context , 2016, 1605.03950.

[13]  F. Browder Remarks on fixed point theorems of contractive type , 1979 .

[14]  W. Groß Grundzüge der Mengenlehre , 1915 .

[15]  D. Pompeiu,et al.  Sur la continuité des fonctions de variables complexes , 1905 .

[16]  W. Groß Kreis und Kugel , 1917 .

[17]  Dennis K. Burke Cauchy sequences in semimetric spaces , 1972 .

[18]  On functions preserving regular semimetrics and quasimetrics satisfying the relaxed polygonal inequality , 2020 .

[19]  F. Browder On the convergence of successive applications for nonlinear functional equations , 1968 .

[20]  L. F. McAuley A RELATION BETWEEN PERFECT SEPARABILITY, COMPLETENESS, AND NORMALITY IN SEMI-METRIC SPACES , 1956 .

[21]  K. Deimling Fixed Point Theory , 2008 .

[22]  Hutchinson without Blaschke: An alternative way to fractals , 2020 .

[23]  J. Jachymski,et al.  Two refinements of Frink’s metrization theorem and fixed point results for Lipschitzian mappings on quasimetric spaces , 2018, Aequationes mathematicae.