Weighted uniform consistency of kernel density estimators

Let fn denote a kernel density estimator of a continuous density f in d dimensions, bounded and positive. Let Ψ(t) be a positive continuous function such that ‖Ψfβ‖∞<∞ for some 0<β<1/2. Under natural smoothness conditions, necessary and sufficient conditions for the sequence ${\sqrt{\frac{nh_{n}^{d}}{2|\log h_{n}^{d}|}}\|\Psi(t)(f_{n}(t)-Ef_{n}(t))\|_{\infty}}$ to be stochastically bounded and to converge a.s. to a constant are obtained. Also, the case of larger values of β is studied where a similar sequence with a different norming converges a.s. either to 0 or to +∞, depending on convergence or divergence of a certain integral involving the tail probabilities of Ψ(X). The results apply as well to some discontinuous not strictly positive densities.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  B. Silverman,et al.  Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .

[3]  E. Giné,et al.  On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals , 2001 .

[4]  Uwe Einmahl,et al.  An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators , 2000 .

[5]  A uniform functional law of the logarithm for the local empirical process , 2004, math/0410143.

[6]  John H. J. Einmahl,et al.  Strong limit theorems for weighted quantile processes , 1988 .

[7]  Laws of the Iterated Logarithm in the Tails for Weighted Uniform Empirical Processes , 1988 .

[8]  A. W. van der Vaart,et al.  Uniform Central Limit Theorems , 2001 .

[9]  Vladimir Koltchinskii,et al.  Testing for Ellipsoidal Symmetry of a Multivariate Distribution , 2000 .

[10]  W. Stout Almost sure convergence , 1974 .

[11]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[12]  D. Pollard,et al.  $U$-Processes: Rates of Convergence , 1987 .

[13]  John H. J. Einmahl,et al.  Bounds for weighted multivariate empirical distribution functions , 1985 .

[14]  Paul Deheuvels,et al.  Uniform Limit Laws for Kernel Density Estimators on Possibly Unbounded Intervals , 2000 .

[15]  D. Pollard Convergence of stochastic processes , 1984 .

[16]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[17]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[18]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[19]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[20]  W. Stute A Law of the Logarithm for Kernel Density Estimators , 1982 .

[21]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[22]  E. Giné,et al.  Decoupling: From Dependence to Independence , 1998 .

[23]  K. Chung Review: William Feller, An Introduction to Probability Theory and its Applications 2 , 1973 .

[24]  Winfried Stute,et al.  The Oscillation Behavior of Empirical Processes: The Multivariate Case , 1984 .

[25]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .