Horadam polynomials for a new family of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-pseu

In the present article, we introduce and study a new family $$\mathcal {F}_{\Sigma }(\delta ,\lambda ,m,n,r)$$ of normalized analytic and bi-univalent functions associating $$\lambda $$ -pseudo functions with Sakaguchi type functions by using the Horadam polynomials. We obtain upper bounds for the initial Taylor–Maclaurin coefficients $$|a_2|$$ and $$|a_3|$$ . Further we obtain the Fekete–Szego inequality for functions in the family $$\mathcal {F}_{\Sigma }(\delta ,\lambda ,m,n,r)$$ which we have introduced here. We also indicate several certain special cases and consequences for our results.

[1]  H. Özlem Güney,et al.  Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers , 2018, Acta Universitatis Sapientiae, Mathematica.

[2]  M. Fekete,et al.  Eine Bemerkung Über Ungerade Schlichte Funktionen , 1933 .

[3]  H. Srivastava,et al.  Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator , 2020, Mathematics.

[4]  Koichi Sakaguchi,et al.  On a certain univalent mapping. , 1959 .

[5]  Hari M. Srivastava,et al.  Certain subclasses of analytic and bi-univalent functions , 2010, Appl. Math. Lett..

[6]  Xiao-Fei Li,et al.  Two New Subclasses of Bi-Univalent Functions , 2012 .

[7]  S. Yalçın,et al.  Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions , 2016, 1605.08224.

[8]  K. O. Babalola On λ-pseudo-starlike functions , 2013 .

[9]  H. Srivastava,et al.  The Second Hankel Determinant for a Certain Class of Bi-Close-to-Convex Functions , 2019, Results in Mathematics.

[10]  J. Brion Topics in carbon 13 NMR spectroscopy, volume 3. Edited by George C. Levy. A Wiley Interscience Publication (John Wiley and Sons, New York. Chichester. Brisbane. Toronto). , 1980 .

[11]  H. Srivastava,et al.  Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials , 2018, Iranian Journal of Science and Technology, Transactions A: Science.

[12]  Eman S. A. Abujarad,et al.  Fekete-Szegö inequality for classes of (p, q)-Starlike and (p, q)-convex functions , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[13]  H. Srivastava,et al.  Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis , 2020 .

[14]  S. Bulut Coefficient estimates for general subclasses of $m$-foldsymmetric analytic bi-univalent functions , 2016 .

[15]  A. K. Mishra,et al.  The fekete-szegö-problem for a subclass of close-to-convex functions , 2001 .

[16]  H. Srivastava,et al.  Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type , 2018 .

[18]  A. F. Horadam,et al.  PELL AND PELL-LUCAS POLYNOMIALS , 1985 .

[19]  B. Frasin Coefficient Inequalities for Certain Classes of Sakaguchi Type Functions , 2010 .

[20]  A. Alamoush,et al.  Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials , 2019, Malaya Journal of Matematik.

[21]  H. Srivastava,et al.  Coefficient estimates for some general subclasses of analytic and bi-univalent functions , 2017 .

[22]  S. Yalçın,et al.  Initial coefficient estimates for a new subclasses of analytic and $m$-fold symmetric bi-univalent functions , 2019, Malaya Journal of Matematik.

[23]  H. Srivastava,et al.  The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution , 2020 .

[24]  S. Joshi,et al.  On some subclasses of bi-univalent functions associated with pseudo-starlike functions , 2016 .

[25]  A. Alamoush Coefficient estimates for a new subclasses ofλ-pseudo biunivalent functions withrespect to symmetrical points associated with the Horadam Polynomials , 2019 .

[26]  S. Bulut Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions , 2016 .

[27]  D. A. Brannan,et al.  ON SOME CLASSES OF BI-UNIVALENT FUNCTIONS , 1988 .

[28]  H. Srivastava,et al.  The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator , 2018, Studia Universitatis Babes-Bolyai Matematica.

[29]  Sanford S. Miller,et al.  Differential Subordinations: Theory and Applications , 2000 .

[30]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers with Applications: Koshy/Fibonacci , 2001 .

[31]  Shigeyoshi Owa,et al.  On Sakaguchi type functions , 2007, Appl. Math. Comput..

[32]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers With Applications , 2018 .

[33]  Hari M. Srivastava,et al.  Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions , 2021, AIMS Mathematics.