A connectivity coordinate system for node and element ordering

Abstract Methods are presented for selecting a good starting node and a suitable transversal for their application in nodal numbering of a structure. A new connectivity coordinate system is defined for systematic description of the nodal ordering algorithm. Applications are extended to element ordering for optimizing the bandwidth of flexibility matrices, and bandwidth and frontwidth of finite element models.

[1]  Sergio Pissanetzky,et al.  Sparse Matrix Technology , 1984 .

[2]  Ali Kaveh,et al.  Algebraic graph theory for ordering , 1990 .

[3]  Ali Kaveh A note on ‘a two‐step approach to finite element ordering’ , 1984 .

[4]  Ian Burgess,et al.  A new node renumbering algorithm for bandwidth reduction , 1986 .

[5]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[6]  S. Sloan An algorithm for profile and wavefront reduction of sparse matrices , 1986 .

[7]  Ali Kaveh SUBMINIMAL CYCLE BASES FOR THE FORCE METHOD OF STRUCTURAL ANALYSIS , 1987 .

[8]  Georges Akhras,et al.  An automatic node relabelling scheme for minimizing a matrix or network bandwidth , 1976 .

[9]  Ali Kaveh An efficient flexibility analysis of structures , 1986 .

[10]  M. Randolph,et al.  Automatic element reordering for finite element analysis with frontal solution schemes , 1983 .

[11]  Ali Kaveh Multiple use of a shortest route tree for ordering , 1986 .

[12]  Abdur Razzaque,et al.  Automatic reduction of frontwidth for finite element analysis , 1980 .

[13]  A. Kaveh On subminimal cycle bases of a graph for the force method , 1988 .

[14]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[15]  Ali Kaveh,et al.  A COMBINATORIAL OPTIMIZATION PROBLEM; OPTIMAL GENERALIZED CYCLE BASES , 1979 .

[16]  Steven J. Fenves,et al.  A two‐step approach to finite element ordering , 1983 .

[17]  Ali Kaveh An efficient program for generating subminimal cycle bases for the flexibility analysis of structures , 1986 .

[18]  M. Allen How upstream collocation works , 1983 .

[19]  Ali Kaveh ORDERING FOR BANDWIDTH REDUCTION , 1986 .

[20]  H. Pina,et al.  An algorithm for frontwidth reduction , 1981 .

[21]  A. Kaveh ALGEBRAIC AND TOPOLOGICAL GRAPH THEORY FOR ORDERING , 1991 .

[22]  A. Kavesh Suboptimal cycle bases of graphs for the flexibility analysis of skeletal structures , 1988 .

[23]  Claude Berge,et al.  The theory of graphs and its applications , 1962 .

[24]  Gordon C. Everstine,et al.  A comparasion of three resequencing algorithms for the reduction of matrix profile and wavefront , 1979 .